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Background & Motivation
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CHERI & Morello
● Capability Hardware Enhanced RISC Instructions (CHERI) brings 

hardware capabilities to RISC ISAs1

● ARM implementation called Morello, with hardware available
● Hardware capabilities constrain memory accesses

○ Enforce bounds and permissions checks
○ Encode bounds and permissions information alongside addresses
○ Capabilities can be used only where needed to lower the porting costs (hybrid 

mode)
● Code and data accesses can be tightly controlled for effective 

compartmentalization

3[1]  R. N. M. Watson et al., "CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization,", 2015



Compartmentalization
● Isolates portions of code and data

○ Reduces the privileges of isolated components to reduce damage which 
can be caused

○ Systems software is often not memory safe - so it is important
● Ideal requirements:

○ Low porting and refactoring cost
○ Low performance overhead vs. uncompartmentalized execution
○ Strong security guarantees (eg. granularity of sharing)
○ Good scalability to many compartments

● Not all methods will suit all needs
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Related Work

● CheriRTOS1, CompartOS2, CheriOS3, CheriBSD4, Cap-VMs5 and 
CHERI JNI6 and CherIoT7 utilize CHERI for compartmentalization

Limitations:
● Lack of exploration of the CHERI hybrid mode 

compartmentalization design space
○ Which models are available?
○ How can data be shared between compartments?

● None of these works evaluates CHERI compartmentalization on 
available hardware
○ Hard to draw meaningful performance conclusions from FPGAs and 

simulations
5[1] H. Xia et al. 2018, [2] H. Almatary et al. 2022, [3] L. G. Esswood, 2021, [4] R. N. M. Watson et al. 2015, [5] V. A. Sartakov et al. 2022, [6] D. Chisnall et al. 2017, 

[7] S. Amar et al. 2023



Research Questions
● How can CHERI hardware capabilities in hybrid mode be leveraged to 

facilitate compartmentalization?
○ Which models are possible?
○ What are the refactoring costs given the compatibility promised by 

hybrid mode?
○ How does the performance compare to other intra-address space 

mechanisms such as MPK?
○ How well do compartment models scale to many compartments?
○ What are the security properties of the compartment models?

Evaluation performed on real hardware to gain better insight into 
performance implications 6



Design
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Overview
● Compartments defined statically at build time by developer
● Initialised during the boot process
● Compartments are enabled by two global architectural capabilities

○ Default Data Capability (DDC) restricts data access to compartment 
memory

○ Program Counter Capability (PCC) restricts code access
● Compartments have private stacks, heaps and allocators
● Each compartment occupies its own portion of the address space
● A compartment switcher resides in memory not accessible to any 

compartment
● This design ensures secure management of hybrid mode CHERI 

compartments 8



Switching Mechanism

9



Challenges
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Data Sharing Overview

● Isolated compartments must communicate
● What compartment models can be used without 

weakening the compartment security, whilst not imposing 
a high overhead on performance and porting effort

● Two methods are explored and evaluated to achieve data 
sharing
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Method 1: 
Manual Capability
Propagation

● Pointers manually annotated in source code to be transformed to 
capabilities

● Can be burdensome due to capability propagation
● Compromise: Individual functions are sandboxed

○ Wrapper function transforms pointer arguments to capability arguments
○ Requires minimal rewriting because scope is individual functions 

● Trust model: sandbox
12



Method 2: 
Overlapping Shared 
Memory
● Shared memory region is initialised
● Shared memory lies between a pair of compartments
● Compartment DDC bounds overlap the shared memory
● Data is annotated by developer to place it in shared memory
● Trust model: mutual distrust
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Evaluation

14



Evaluation Overview

● FlexOS1 (compartmentalization-aware LibOS) ported to Morello
● Libsodium crypto library test suite derived benchmark used to 

evaluate manual capability propagation
○ 5 functions manually annotated
○ Different configurations run

● SQLite benchmark used to evaluate overlapping shared memory 
approach
○ Filesystem isolated
○ Performs 5000 INSERT operations - system call and filesystem heavy

All experiments were run bare-metal on Morello hardware

15[1] Hugo Lefeuvre et al. 2022



Porting Effort

Manual capability propagation:

● Proportionally higher than overlapping shared memory; all shared data 
pointers must be annotated - max 73/141 LoC (>50%)

● Porting effort as implemented is low due to small scope of functions

Overlapping shared memory:

● Low; shared data only annotated at declaration - <300/5.8k LoC (~5%) 

Insight:

● Important to choose code to isolate carefully 16



Performance
Manual Capability Propagation:

● With carefully selected functions overhead is 
low (Libsodium)

○ Overhead evaluated is 0.1%-12.2%

Overlapping shared memory:

● Performance overhead same order of 
magnitude to MPK and lower than EPT on 
FlexOS (SQLite)

● Runs faster than same benchmark on Linux 
(SQLite)

○ Same hardware
○ Isolation is between user and kernel 17



Summary
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Summary of Contributions

1. Exploration of hybrid mode CHERI 
compartmentalization design space

2. Performance evaluation of approaches
3. Evaluation of security properties compared to 

Intel MPK and EPT

19Project Website:


