
Software Compartmentalization 
Trade-Offs with Hardware 

Capabilities
John Alistair Kressel, Hugo Lefeuvre and Pierre Olivier

The University of Manchester

This work was partly funded by the EPSRC/Innovate UK grant EP/X015610/1(FlexCap), the UK’s EPSRC grants EP/V012134/1 
(UniFaaS), EP/V000225/1 (SCorCH), a studentship from NEC Labs Europe and a Microsoft Research PhD Fellowship.



Background & Motivation

2



CHERI & Morello
● Capability Hardware Enhanced RISC Instructions (CHERI) brings 

hardware capabilities to RISC ISAs1

● ARM implementation called Morello, with hardware available
● Hardware capabilities constrain memory accesses

○ Enforce bounds and permissions checks
○ Encode bounds and permissions information alongside addresses
○ Capabilities can be used only where needed to lower the porting costs (hybrid 

mode)
● Code and data accesses can be tightly controlled for effective 

compartmentalization

3[1]  R. N. M. Watson et al., "CHERI: A Hybrid Capability-System Architecture for Scalable Software Compartmentalization,", 2015



Compartmentalization
● Isolates portions of code and data

○ Reduces the privileges of isolated components to reduce damage which 
can be caused

○ Systems software is often not memory safe - so it is important
● Ideal requirements:

○ Low porting and refactoring cost
○ Low performance overhead vs. uncompartmentalized execution
○ Strong security guarantees (eg. granularity of sharing)
○ Good scalability to many compartments

● Not all methods will suit all needs

4



Related Work

● CheriRTOS1, CompartOS2, CheriOS3, CheriBSD4, Cap-VMs5 and 
CHERI JNI6 and CherIoT7 utilize CHERI for compartmentalization

Limitations:
● Lack of exploration of the CHERI hybrid mode 

compartmentalization design space
○ Which models are available?
○ How can data be shared between compartments?

● None of these works evaluates CHERI compartmentalization on 
available hardware
○ Hard to draw meaningful performance conclusions from FPGAs and 

simulations
5[1] H. Xia et al. 2018, [2] H. Almatary et al. 2022, [3] L. G. Esswood, 2021, [4] R. N. M. Watson et al. 2015, [5] V. A. Sartakov et al. 2022, [6] D. Chisnall et al. 2017, 

[7] S. Amar et al. 2023



Research Questions
● How can CHERI hardware capabilities in hybrid mode be leveraged to 

facilitate compartmentalization?
○ Which models are possible?
○ What are the refactoring costs given the compatibility promised by 

hybrid mode?
○ How does the performance compare to other intra-address space 

mechanisms such as MPK?
○ How well do compartment models scale to many compartments?
○ What are the security properties of the compartment models?

Evaluation performed on real hardware to gain better insight into 
performance implications 6



Design

7



Overview
● Compartments defined statically at build time by developer
● Initialised during the boot process
● Compartments are enabled by two global architectural capabilities

○ Default Data Capability (DDC) restricts data access to compartment 
memory

○ Program Counter Capability (PCC) restricts code access
● Compartments have private stacks, heaps and allocators
● Each compartment occupies its own portion of the address space
● A compartment switcher resides in memory not accessible to any 

compartment
● This design ensures secure management of hybrid mode CHERI 

compartments 8



Switching Mechanism

9



Challenges

10



Data Sharing Overview

● Isolated compartments must communicate
● What compartment models can be used without 

weakening the compartment security, whilst not imposing 
a high overhead on performance and porting effort

● Two methods are explored and evaluated to achieve data 
sharing

11



Method 1: 
Manual Capability
Propagation

● Pointers manually annotated in source code to be transformed to 
capabilities

● Can be burdensome due to capability propagation
● Compromise: Individual functions are sandboxed

○ Wrapper function transforms pointer arguments to capability arguments
○ Requires minimal rewriting because scope is individual functions 

● Trust model: sandbox
12



Method 2: 
Overlapping Shared 
Memory
● Shared memory region is initialised
● Shared memory lies between a pair of compartments
● Compartment DDC bounds overlap the shared memory
● Data is annotated by developer to place it in shared memory
● Trust model: mutual distrust

13



Evaluation

14



Evaluation Overview

● FlexOS1 (compartmentalization-aware LibOS) ported to Morello
● Libsodium crypto library test suite derived benchmark used to 

evaluate manual capability propagation
○ 5 functions manually annotated
○ Different configurations run

● SQLite benchmark used to evaluate overlapping shared memory 
approach
○ Filesystem isolated
○ Performs 5000 INSERT operations - system call and filesystem heavy

All experiments were run bare-metal on Morello hardware

15[1] Hugo Lefeuvre et al. 2022



Porting Effort

Manual capability propagation:

● Proportionally higher than overlapping shared memory; all shared data 
pointers must be annotated - max 73/141 LoC (>50%)

● Porting effort as implemented is low due to small scope of functions

Overlapping shared memory:

● Low; shared data only annotated at declaration - <300/5.8k LoC (~5%) 

Insight:

● Important to choose code to isolate carefully 16



Performance
Manual Capability Propagation:

● With carefully selected functions overhead is 
low (Libsodium)

○ Overhead evaluated is 0.1%-12.2%

Overlapping shared memory:

● Performance overhead same order of 
magnitude to MPK and lower than EPT on 
FlexOS (SQLite)

● Runs faster than same benchmark on Linux 
(SQLite)

○ Same hardware
○ Isolation is between user and kernel 17



Summary

18



Summary of Contributions

1. Exploration of hybrid mode CHERI 
compartmentalization design space

2. Performance evaluation of approaches
3. Evaluation of security properties compared to 

Intel MPK and EPT

19Project Website:


