
CHERI-picking: Leveraging

capability hardware for

prefetching
Shaurya Patel, Sid Agrawal, Alexandra (Sasha) Fedorova, Margo Seltzer

University of British Columbia

1

Memory management in the datacenter

2

Memory management in the datacenter

2

Memory management in the datacenter

2

Memory management in the datacenter

DRAM chips cost

30% of a datacenter

2

Memory management in the datacenter

DRAM chips cost

30% of a datacenter

Datacenter machine

2

Memory management in the datacenter

DRAM chips cost

30% of a datacenter

Datacenter machine

Memory offloading

2

Memory management in the datacenter

DRAM chips cost

30% of a datacenter

Datacenter machine

Memory offloading

Access to these devices is slower than

DRAM

2

Memory management in the datacenter

Datacenter machine

Memory offloading

Prefetching memory pages is an effective way to minimize overhead

2

Problem with current kernel prefetchers

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

pagefault

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

pagefault

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

pagefault

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

pagefault

Current kernel prefetchers are good with sequential

accesses that show regular access patterns

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

pagefault

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

pagefault

User u = session.getUser();

Account a = u.getAccount();

Balance b = a.getBalance();

pagefault

while(!curr) {

curr = curr->next

}

3

Problem with current kernel prefetchers

for(i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns:

pagefault

User u = session.getUser();

Account a = u.getAccount();

Balance b = a.getBalance();

pagefault

Current kernel prefetchers are ineffective for

irregular patterns such as reference or pointer

based patterns

while(!curr) {

curr = curr->next

}

3

Do pointer-based patterns even exist?

● What percentage of pointer accesses cause page faults?

● What is the performance of the current default prefetcher on those

pagefaults?

4

Do pointer-based patterns even exist?

● What percentage of pointer accesses cause page faults?

● What is the performance of the current default prefetcher on those

pagefaults?

4

Do pointer-based patterns even exist?

● What percentage of pointer accesses cause page faults?

● What is the performance of the current default prefetcher on those

pagefaults?

4

CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched

pages.

CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched

pages.

CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched

pages.

CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched

pages.

CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched

pages.

CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched

pages.

CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched

pages.

CHERI overview

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,

and stores a tag bit in hardware for each pointer

CHERI overview

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Prior to CHERI

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,

and stores a tag bit in hardware for each pointer

CHERI overview

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Prior to CHERI With CHERI

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,

and stores a tag bit in hardware for each pointer

CHERI overview

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Prior to CHERI With CHERI

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,

and stores a tag bit in hardware for each pointer

Tag bits

100010

CHERI overview

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,

and stores a tag bit in hardware for each pointer

CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Tags for the page?

CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

100010

CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

100010

Internal tag bitmap

CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

100010

Internal tag bitmap

100010

CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Internal tag bitmap

100010

CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Move page to swap

CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Page accessed; swap-in

page

CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Page accessed; swap-in

page

CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Page accessed; swap-in

page

Restore tags 100010

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

8

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap Run the default

strided prefetcher

on pagefault history

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap Run the default

strided prefetcher

on pagefault history

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap Run the CHERI-

picking algorithm

The default

prefetcher can run

before the page is

swapped in but

CHERI-picking can

run only after the

page is swapped in

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap Run the CHERI-

picking algorithm

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap Run the CHERI-

picking algorithm

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap Run the CHERI-

picking algorithm

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap

8

CheriBSD kernel

Tree traversal

CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions.

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

PC

Node 1 Swap

Node 2 Mapped

Node 3 Swap

node1

node2 node3

Page resident?

Fetch node1 from swap

8

CheriBSD kernel

Tree traversal

Evaluation

We implemented CHERI-picking in the CheriBSD kernel version 22.12

We run evaluations on an ARM Morello CHERI-capable processor that contains 4 cores running at

2.4GHz. We limit memory so that the working set size of applications is twice that of the available

memory, inducing memory pressure.

Metrics:

Soft faults: These page faults occur when a page is already in memory, but not mapped into an

application’s address space; indicating the prefetcher’s prediction capacity.

Coverage: The percentage of page faults that were satisfied by previously prefetched pages.

9

Evaluation

10

Evaluation

3.7X

10

Evaluation

3.7X

3X

10

Challenges

● The CHERI-picking algorithm is naive and

has low accuracy. Major faults are mandatory

pagefaults for pages not present in memory.

● The overhead of running the CHERI-

picking algorithm is high which limits end

to end performance improvement.

11

Challenges

● The CHERI-picking algorithm is naive and

has low accuracy. Major faults are mandatory

pagefaults for pages not present in memory.

● The overhead of running the CHERI-

picking algorithm is high which limits end

to end performance improvement.
1.08X

11

Summary

We develop an analyzer and show that applications experience non-trivial

amount of pointer-based pagefaults.

We introduce CHERI-picking an application agnostic kernel pointer prefetcher.

We find that CHERI-picking improves prefetching coverage by 3X.

We plan to optimize the CHERI-picking algorithm and improve end to end

performance in the future.

12

	Slide 1: CHERI-picking: Leveraging capability hardware for prefetching
	Slide 2: Memory management in the datacenter
	Slide 3: Memory management in the datacenter
	Slide 4: Memory management in the datacenter
	Slide 5: Memory management in the datacenter
	Slide 6: Memory management in the datacenter
	Slide 7: Memory management in the datacenter
	Slide 8: Memory management in the datacenter
	Slide 9: Memory management in the datacenter
	Slide 10: Problem with current kernel prefetchers
	Slide 11: Problem with current kernel prefetchers
	Slide 12: Problem with current kernel prefetchers
	Slide 13: Problem with current kernel prefetchers
	Slide 14: Problem with current kernel prefetchers
	Slide 15: Problem with current kernel prefetchers
	Slide 16: Problem with current kernel prefetchers
	Slide 17: Problem with current kernel prefetchers
	Slide 18: Problem with current kernel prefetchers
	Slide 19: Do pointer-based patterns even exist?
	Slide 20: Do pointer-based patterns even exist?
	Slide 21: Do pointer-based patterns even exist?
	Slide 22: CHERI-picking
	Slide 23: CHERI-picking
	Slide 24: CHERI-picking
	Slide 25: CHERI-picking
	Slide 26: CHERI-picking
	Slide 27: CHERI-picking
	Slide 28: CHERI-picking
	Slide 29: CHERI overview
	Slide 30: CHERI overview
	Slide 31: CHERI overview
	Slide 32: CHERI overview
	Slide 33: CHERI overview
	Slide 34: CHERI and swap
	Slide 35: CHERI and swap
	Slide 36: CHERI and swap
	Slide 37: CHERI and swap
	Slide 38: CHERI and swap
	Slide 39: CHERI and swap
	Slide 40: CHERI and swap
	Slide 41: CHERI and swap
	Slide 42: CHERI and swap
	Slide 43: CHERI and swap
	Slide 44: CHERI and swap
	Slide 45: CHERI and swap
	Slide 46: CHERI and swap
	Slide 47: CHERI-picking overview and design
	Slide 48: CHERI-picking overview and design
	Slide 49: CHERI-picking overview and design
	Slide 50: CHERI-picking overview and design
	Slide 51: CHERI-picking overview and design
	Slide 52: CHERI-picking overview and design
	Slide 53: CHERI-picking overview and design
	Slide 54: CHERI-picking overview and design
	Slide 55: CHERI-picking overview and design
	Slide 56: CHERI-picking overview and design
	Slide 57: CHERI-picking overview and design
	Slide 58: CHERI-picking overview and design
	Slide 59: CHERI-picking overview and design
	Slide 60: CHERI-picking overview and design
	Slide 61: Evaluation
	Slide 62: Evaluation
	Slide 63: Evaluation
	Slide 64: Evaluation
	Slide 65: Challenges
	Slide 66: Challenges
	Slide 67: Summary

