CHERI-picking: Leveraging
capability hardware for
prefetching

Shaurya Patel, Sid Agrawal, Alexandra (Sasha) Fedorova, Margo Seltzer
University of British Columbia
SYSTOPIA

m~

k

Memory management in the datacenter

Memory management in the datacenter

77 [l I Y
i mm

I

/1 I|'|'|\ \\

Memory management in the datacenter

I

HHI‘|H \\

77 (X1 N T
ATV

Memory management in the datacenter

77 (X1 N T
ATV

I

HHI‘|H \\

DRAM chips cost
30% of a datacenter

Memory management in the datacenter

77 (X1 N T
AT

I

/1 II‘|H \\

Datacenter machine Hiss

DRAM chips cost
30% of a datacenter

Memory management in the datacenter

Memory offloading

77 (X1 N T
AT

I

/1 HlH \\

Datacenter machine Hiss

DRAM chips cost
30% of a datacenter

Memory management in the datacenter

Memory offloading

TN
[I I T

77 X0 N 1Y
/1 H|H \\

Datacenter machine

DRAM chips cost Access to these devices is slower than
30% of a datacenter DRAM

Memory management in the datacenter

Memory offloading

AN

/1 HlH \\

77 (X1 N T
AT

Ml

Datacenter machine

Prefetching memory pages is an effective way to minimize overhead

Problem with current kernel prefetchers

Problem with current kernel prefetchers

Sequential patterns:

for(i = 0; i < 1000; i++) {
b = a[i];

Problem with current kernel prefetchers

Sequential patterns:

for(i = 0; i < 1000; i++) {
b = a[i];

}

HEEEN
pagefault

A

Problem with current kernel prefetchers

Sequential patterns:

for(i = 0; i < 1000; i++) {
b = a[i];

}

pagefault /‘/%

Problem with current kernel prefetchers

Sequential patterns:

for(i = 0; i < 1000; i++) {
b = a[i];

}

pagefault /‘/%

Problem with current kernel prefetchers

Sequential patterns:

for(i=0;i<1000; i++){
b = a[i];

pagefaul /‘/%'

Current kernel prefetchers are good with sequential
accesses that show regular access patterns

Problem with current kernel prefetchers

Sequential patterns:

for(i = 0; i < 1000; i++) {
b = a[i];

}

pagefault /‘/%

Problem with current kernel prefetchers

Sequential patterns: User u = session.getUser(); while(lcurr) {
for(i=0; i< 1000; i++){ Account a = u.getAccount(); curr = curr->next
b = ali; Balance b = a.getBalance(); }

}

pagefault

pagefault /‘/%

Problem with current kernel prefetchers

Sequential patterns:

for(i=0;i<1000; i++){

b = a[i];

User u = session.getUser(); while(!curr) {
Account a = u.getAccount(); curr = curr->next
Balance b = a.getBalance(); }

pagefault

06

Current kernel prefetchers are ineffective for
irregular patterns such as reference or pointer
based patterns

Do pointer-based patterns even exist?

e \What percentage of pointer accesses cause page faults?
e \What is the performance of the current default prefetcher on those
pagefaults?

Do pointer-based patterns even exist?

e \What percentage of pointer accesses cause page faults?
e \What is the performance of the current default prefetcher on those
pagefaults?

Percentage of pointer based pagefaults
100

75
50

25

0
Linkedlist Canneal BFS Redis

Do pointer-based patterns even exist?

e \What percentage of pointer accesses cause page faults?
e \What is the performance of the current default prefetcher on those
pagefaults?

Percentage of pointer based pagefaults Percentage of pointer based faults prefetched by
100 100

75 75

50 50

25 25

0 0

Linkedlist Canneal BFS Redis Linkedlist Canneal BFS Redis

CHERI-picking
Coverage: The percentage of page faults that were satisfied by previously prefetched
pages.
Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific
approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023
[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023

CHERI-picking
Coverage: The percentage of page faults that were satisfied by previously prefetched
pages.
Approach Application agnostic Coverage

Strided kernel prefetcher \/

Application specific
approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023
[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023

CHERI-picking
Coverage: The percentage of page faults that were satisfied by previously prefetched
pages.
Approach Application agnostic Coverage

Strided kernel prefetcher \/ x

Application specific
approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023
[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023

CHERI-picking
Coverage: The percentage of page faults that were satisfied by previously prefetched
pages.
Approach Application agnostic Coverage

Strided kernel prefetcher \/ x

Application specific
approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023
[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023

CHERI-picking

Coverage: The percentage of page faults that were satisfied by previously prefetched
pages.

Approach Application agnostic Coverage

Strided kernel prefetcher \/ x
Application specific x \/
approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023
[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023

CHERI-picking

Coverage: The percentage of page faults that were satisfied by previously prefetched
pages.

Approach Application agnostic Coverage

v/ X
oo X v/
v

Strided kernel prefetcher

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023
[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023

CHERI-picking

Coverage: The percentage of page faults that were satisfied by previously prefetched
pages.

Approach Application agnostic Coverage

v/ X
oo X v/
v v

Strided kernel prefetcher

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023
[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023

CHERI overview

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,
and stores a tag bit in hardware for each pointer

CHERI overview

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,
and stores a tag bit in hardware for each pointer
Prior to CHERI

0x1000
0x2000
0x3000
0x4000

0x5000

0x6000

CHERI overview

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,
and stores a tag bit in hardware for each pointer

Prior to CHERI With CHERI
0x1000 0x1000
0x2000 0x2000
0x3000 0x3000
0x4000 0x4000
0x5000 0x5000
0x6000 0x6000

CHERI overview

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,
and stores a tag bit in hardware for each pointer

Prior to CHERI With CHERI
Tag bits
0x1000 0x1000 100010
0x2000 0x2000
0x3000 0x3000
0x4000 0x4000
0x5000 0x5000
0x6000 0x6000

CHERI overview

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities,
and stores a tag bit in hardware for each pointer

CHERI and swap

CheriBSD kernel

0x1000
0x2000
0x3000
0x4000

0x5000
0x6000

CHERI and swap

CheriBSD kernel

Tags for the page?

=
<

CPU

L CLLCELEEE

0x1000
0x2000
0x3000
0x4000

0x5000
0x6000

CHERI and swap

CheriBSD kernel

v

CPU
100010

L CLLCELEEE

0x1000
0x2000
0x3000
0x4000

0x5000
0x6000

CHERI and swap

Internal tag bitmap

CheriBSD kernel

v

CPU
100010

L CLLCELEEE

0x1000
0x2000
0x3000
0x4000

0x5000
0x6000

CHERI and swap

Internal tag bitmap
100010

CheriBSD kernel

v

CPU
100010

L CLLCELEEE

0x1000
0x2000
0x3000
0x4000

0x5000
0x6000

CHERI and swap

Internal tag bitmap
100010

CheriBSD kernel

0x1000
0x2000
0x3000
0x4000

0x5000
0x6000

CHERI and swap

CheriBSD kernel

Internal tag bitmap
100010

CHERI and swap

Internal tag bitmap
100010

CheriBSD kernel

Move page to swap

CHERI and swap

CheriBSD kernel

Internal tag bitmap
100010

CHERI and swap

CheriBSD kernel

Internal tag bitmap
100010

CHERI and swap

CPU

L CLLCELEEE

Internal tag bitmap
100010

CheriBSD kernel

Page accessed; swap-in
page

CHERI and swap

Internal tag bitmap
100010

CheriBSD kernel

Page accessed; swap-in
page

CHERI and swap

Internal tag bitmap
100010

CheriBSD kernel

—

CPU g <«
Restore tags 100010

Page accessed; swap-in
page

L CLLCELEEE

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel
Tree traversal

PC — node1
/ \

node2 node3

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel
Tree traversal

PC — node1
/ \

node2 node3

lPage resident?

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel
Tree traversal

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel

Tree traversal
Run the default

strided prefetcher
on pagefault history

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel

Tree traversal
Run the default

strided prefetcher
on pagefault history

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel
Tree traversal

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel
Tree traversal

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

*node2

Node 1 Swap
Node 2 Mapped
Node 3 Swap

*node3

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application

agnostic manner.

Tree traversal

PC — node1

CheriBSD kernel

Fetch node1 from swap

“— —~—
node2 node3

lPage resident?

Node 1 Swap
Node 2 Mapped
Node 3 Swap

v

*node2

*node3

Run the CHERI-
picking algorithm

The default
prefetcher can run
before the page is
swapped in but
CHERI-picking can
run only after the
page is swapped in

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel

Tree traversal
Run the CHERI-

picking algorithm

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

*node2

Node 1 Swap
Node 2 Mapped
Node 3 Swap

*node3

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel

Tree traversal
Run the CHERI-

picking algorithm

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel

Tree traversal
Run the CHERI-

picking algorithm

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel
Tree traversal

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

CHERI-picking overview and design

e CHERI-picking leverages CHERI to make prefetching decisions.
e CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application
agnostic manner.

CheriBSD kernel
Tree traversal

Fetch node1 from swap

PC — node1
/ \

node2 node3

lPage resident?

v

Node 1 Swap
Node 2 Mapped
Node 3 Swap

Evaluation

We implemented CHERI-picking in the CheriBSD kernel version 22.12

We run evaluations on an ARM Morello CHERI-capable processor that contains 4 cores running at
2.4GHz. We limit memory so that the working set size of applications is twice that of the available
memory, inducing memory pressure.

Metrics:

Soft faults: These page faults occur when a page is already in memory, but not mapped into an
application’s address space; indicating the prefetcher’s prediction capacity.

Coverage: The percentage of page faults that were satisfied by previously prefetched pages.

Evaluation

Number of softfaults

B Default prefetcher B CHERI-picking
4000

3000
2000

1000

BFS Canneal

Coverage

100
75
50

25

B Default prefetcher B CHERI-picking

BFS Canneal

10

Evaluation

Number of softfaults

B Default prefetcher B CHERI-picking
4000

3000
2000

1000

BFS Canneal

Coverage

100
75
50

25

B Default prefetcher B CHERI-picking

BFS Canneal

10

Evaluation

Number of softfaults

B Default prefetcher B CHERI-picking
4000

3000
2000

1000

BFS Canneal

Coverage

100
75
50

25

B Default prefetcher B CHERI-picking

BFS Canneal

10

Challenges

The CHERI-picking algorithm is naive and
has low accuracy. Major faults are mandatory
pagefaults for pages not present in memory.
The overhead of running the CHERI-
picking algorithm is high which limits end
to end performance improvement.

Number of hard faults

100

75

50

25

B Default prefetcher B CHERI-picking

BFS

canneal

11

Challenges

The CHERI-picking algorithm is naive and
has low accuracy. Major faults are mandatory
pagefaults for pages not present in memory.
The overhead of running the CHERI-
picking algorithm is high which limits end
to end performance improvement.

Number of hard faults

100

75

50

25

B Default prefetcher B CHERI-picking

BFS

1.08X

canneal

11

Summary

We develop an analyzer and show that applications experience non-trivial
amount of pointer-based pagefaults.

We introduce CHERI-picking an application agnostic kernel pointer prefetcher.
We find that CHERI-picking improves prefetching coverage by 3X.

We plan to optimize the CHERI-picking algorithm and improve end to end
performance in the future.

12

	Slide 1: CHERI-picking: Leveraging capability hardware for prefetching
	Slide 2: Memory management in the datacenter
	Slide 3: Memory management in the datacenter
	Slide 4: Memory management in the datacenter
	Slide 5: Memory management in the datacenter
	Slide 6: Memory management in the datacenter
	Slide 7: Memory management in the datacenter
	Slide 8: Memory management in the datacenter
	Slide 9: Memory management in the datacenter
	Slide 10: Problem with current kernel prefetchers
	Slide 11: Problem with current kernel prefetchers
	Slide 12: Problem with current kernel prefetchers
	Slide 13: Problem with current kernel prefetchers
	Slide 14: Problem with current kernel prefetchers
	Slide 15: Problem with current kernel prefetchers
	Slide 16: Problem with current kernel prefetchers
	Slide 17: Problem with current kernel prefetchers
	Slide 18: Problem with current kernel prefetchers
	Slide 19: Do pointer-based patterns even exist?
	Slide 20: Do pointer-based patterns even exist?
	Slide 21: Do pointer-based patterns even exist?
	Slide 22: CHERI-picking
	Slide 23: CHERI-picking
	Slide 24: CHERI-picking
	Slide 25: CHERI-picking
	Slide 26: CHERI-picking
	Slide 27: CHERI-picking
	Slide 28: CHERI-picking
	Slide 29: CHERI overview
	Slide 30: CHERI overview
	Slide 31: CHERI overview
	Slide 32: CHERI overview
	Slide 33: CHERI overview
	Slide 34: CHERI and swap
	Slide 35: CHERI and swap
	Slide 36: CHERI and swap
	Slide 37: CHERI and swap
	Slide 38: CHERI and swap
	Slide 39: CHERI and swap
	Slide 40: CHERI and swap
	Slide 41: CHERI and swap
	Slide 42: CHERI and swap
	Slide 43: CHERI and swap
	Slide 44: CHERI and swap
	Slide 45: CHERI and swap
	Slide 46: CHERI and swap
	Slide 47: CHERI-picking overview and design
	Slide 48: CHERI-picking overview and design
	Slide 49: CHERI-picking overview and design
	Slide 50: CHERI-picking overview and design
	Slide 51: CHERI-picking overview and design
	Slide 52: CHERI-picking overview and design
	Slide 53: CHERI-picking overview and design
	Slide 54: CHERI-picking overview and design
	Slide 55: CHERI-picking overview and design
	Slide 56: CHERI-picking overview and design
	Slide 57: CHERI-picking overview and design
	Slide 58: CHERI-picking overview and design
	Slide 59: CHERI-picking overview and design
	Slide 60: CHERI-picking overview and design
	Slide 61: Evaluation
	Slide 62: Evaluation
	Slide 63: Evaluation
	Slide 64: Evaluation
	Slide 65: Challenges
	Slide 66: Challenges
	Slide 67: Summary

