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Prefetching memory pages is an effective way to minimize overhead
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Sequential patterns: User u = session.getUser(); while(lcurr) {
for(i=0; i< 1000; i++){ Account a = u.getAccount(); curr = curr->next
b = ali; Balance b = a.getBalance(); }
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Problem with current kernel prefetchers

Sequential patterns:

for(i=0;i<1000; i++){

b = a[i];

User u = session.getUser(); while(!curr) {
Account a = u.getAccount(); curr = curr->next
Balance b = a.getBalance(); }

pagefault
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Current kernel prefetchers are ineffective for
irregular patterns such as reference or pointer
based patterns
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Evaluation

We implemented CHERI-picking in the CheriBSD kernel version 22.12

We run evaluations on an ARM Morello CHERI-capable processor that contains 4 cores running at
2.4GHz. We limit memory so that the working set size of applications is twice that of the available
memory, inducing memory pressure.

Metrics:

Soft faults: These page faults occur when a page is already in memory, but not mapped into an
application’s address space; indicating the prefetcher’s prediction capacity.

Coverage: The percentage of page faults that were satisfied by previously prefetched pages.
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Challenges

The CHERI-picking algorithm is naive and
has low accuracy. Major faults are mandatory
pagefaults for pages not present in memory.
The overhead of running the CHERI-
picking algorithm is high which limits end
to end performance improvement.
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Summary

We develop an analyzer and show that applications experience non-trivial
amount of pointer-based pagefaults.

We introduce CHERI-picking an application agnostic kernel pointer prefetcher.
We find that CHERI-picking improves prefetching coverage by 3X.

We plan to optimize the CHERI-picking algorithm and improve end to end
performance in the future.
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