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Memory management in the datacenter

Datacenter machine

Memory offloading

Prefetching memory pages is an effective way to minimize overhead
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for( i = 0; i < 1000; i++) {

b = a[i];

…

}

Sequential patterns: 

pagefault

User u = session.getUser();

Account a = u.getAccount();

Balance b = a.getBalance();

pagefault

Current kernel prefetchers are ineffective for 

irregular patterns such as reference or pointer 

based patterns

while(!curr) {

curr = curr->next

}
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4



Do pointer-based patterns even exist?

● What percentage of pointer accesses cause page faults?

● What is the performance of the current default prefetcher on those 

pagefaults?

4



Do pointer-based patterns even exist?

● What percentage of pointer accesses cause page faults?

● What is the performance of the current default prefetcher on those 

pagefaults?

4



CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific 

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched 

pages.



CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific 

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched 

pages.



CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific 

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched 

pages.



CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific 

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched 

pages.



CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific 

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched 

pages.



CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific 

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched 

pages.



CHERI-picking

Approach Application agnostic Coverage

Strided kernel prefetcher

Application specific 

approaches [1][2]

CHERI-picking

[1] Canvas: Isolated and Adaptive Swapping for Multi-Applications on Remote Memory. Wang et. al. NSDI 2023

[2] DiLOS: Do Not Trade Compatibility for Performance in Memory Disaggregation. Yoon et. al. Eurosys 2023 5

Coverage: The percentage of page faults that were satisfied by previously prefetched 

pages.



CHERI overview

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities, 

and stores a tag bit in hardware for each pointer



CHERI overview

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Prior to CHERI

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities, 

and stores a tag bit in hardware for each pointer



CHERI overview

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

0x1000                

0x4000                

0x5000                

0x6000                

0x2000                

0x3000                

Prior to CHERI With CHERI

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities, 

and stores a tag bit in hardware for each pointer



CHERI overview

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

0x1000                

0x4000                

0x5000                

0x6000                

0x2000                

0x3000                

Prior to CHERI With CHERI

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities, 

and stores a tag bit in hardware for each pointer

Tag bits

100010



CHERI overview

6

Capability hardware enhanced RISC instructions (CHERI) treats all pointers as capabilities, 

and stores a tag bit in hardware for each pointer



CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000



CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Tags for the page?



CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

100010



CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

100010

Internal tag bitmap



CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

100010

Internal tag bitmap

100010



CHERI and swap

7

CheriBSD kernel

0x1000

0x4000

0x5000

0x6000

0x2000

0x3000

Internal tag bitmap

100010



CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010



CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Move page to swap



CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010



CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010



CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Page accessed; swap-in 

page



CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Page accessed; swap-in 

page



CHERI and swap

7

CheriBSD kernel

Internal tag bitmap

100010

Page accessed; swap-in 

page

Restore tags 100010



CHERI-picking overview and design

● CHERI-picking leverages CHERI to make prefetching decisions. 

● CHERI treats all pointers as capabilities, that allows the OS to identify pointers in an application 
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Evaluation

We implemented CHERI-picking in the CheriBSD kernel version 22.12

We run evaluations on an ARM Morello CHERI-capable processor that contains 4 cores running at 

2.4GHz. We limit memory so that the working set size of applications is twice that of the available 

memory, inducing memory pressure.

Metrics:

Soft faults: These page faults occur when a page is already in memory, but not mapped into an 

application’s address space; indicating the prefetcher’s prediction capacity.

Coverage: The percentage of page faults that were satisfied by previously prefetched pages.
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Challenges

● The CHERI-picking algorithm is naive and 

has low accuracy. Major faults are mandatory 

pagefaults for pages not present in memory.

● The overhead of running the CHERI-

picking algorithm is high which limits end 

to end performance improvement.

11



Challenges

● The CHERI-picking algorithm is naive and 

has low accuracy. Major faults are mandatory 
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Summary

We develop an analyzer and show that applications experience non-trivial 

amount of pointer-based pagefaults. 

We introduce CHERI-picking an application agnostic kernel pointer prefetcher.

We find that CHERI-picking improves prefetching coverage by 3X.

We plan to optimize the CHERI-picking algorithm and improve end to end 

performance in the future.
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