Process Composition with Typed Unix Pipes

Michael Sippel, Horst Schirmeier

2023/10/23

Motivation

KERNEL

UTILITIES

Source: Film “The UNIX System: Making Computers More
Productive”, 1982, Bell Labs

Motivation

Example
Show three least recently accessed directories in PATH

echo -n S$PATH

| xargs —-d: stat -c %X, %n
| sort —-n

| head -3

| cut -d, —-f2

Motivation

Example
Show three least recently accessed directories in PATH

_ /home/micha/bin:/usr/local /sbin: /usr/local /
echo -n SPATH bin: /usr/bin:/bin

| xargs —-d: stat -c %X, %o
| sort —-n

| head -3

| cut -d, —-f2

Motivation

Example

Show three least recently accessed directories in PATH

echo -n $PATH /home/micha/bin:/usr/local /sbin:/usr/local /
| xargs -d: stat —-c %X 1695801132, /home/micha/bin
. ’

1695803447, /usr/local /sbin
| sort -n 1695814536, /usr/local /bin
| head -3 1695802139, /usr/bin
| cut -d, -f2 1695802144, /bin

4

Motivation

Example

Show three least recently accessed directories in PATH

echo
xargs —-d:

sort —n
head -3
cut —-d,

-n $PATH

stat

-f2

—C

X, %

/home/micha/bin:/usr/local /sbin:/usr/local /

1695801132, /home/micha/bin

1695801132, /home/micha/bin
1695802139, /usr/bin
1695802144, /bin

1695803447, /usr/local /sbin
1695814536, /usr/local /bin

Motivation

Example

Show three least recently accessed directories in PATH

echo
xargs —-d:

sort —n
head -3
cut —-d,

-n $PATH

stat

-f2

—C

X, %

/home/micha/bin:/usr/local /sbin:/usr/local /

1695801132, /home/micha/bin

1695801132, /home/micha/bin

1695801132, /home/micha/bin
1695802139, /usr/bin
1695802144, /bin

Motivation

Example

Show three least recently accessed directories in PATH

echo —n S$PATH

| xargs -d:

| sort —-n
| head -3
| cut -d,

stat

-£2

—C

X, %

/home/micha/bin:/usr/local /sbin:/usr/local /

1695801132, /home/micha/bin

1695801132, /home/micha/bin

1695801132, /home,/micha/bin

/home/micha/bin n
/usr/bin
/bin

Consequences of invalid compositions

Problem Analysis

Example
Show three least recently accessed directories in PATH

echo —-n S$PATH

| xargs —-d: stat -c %X, %n
| sort —-n

| head -3

| cut -d, —-f2

Consequences of invalid compositions
Problem Analysis

Example

Show three least recently accessed directories in PATH

echo -n $PATH

| xargs =d7 stat -c %X, %n
| sort —-n

| head -3

| cut -d, —-f2

Consequences of invalid compositions
Problem Analysis

Example

Show three least recently accessed directories in PATH

echo -n $SPATH

| xargs =d7 stat -c %X, %n

| sort -n stat: cannot statx '/home/micha/bin:/usr/local/sbin:
| head -3 /usr/local/bin: /usr/bin:/bin’: No such file or directory
ea -
|

cut -d, —-f2

Consequences of invalid compositions

Problem Analysis

» runtime error (parser error / invalid input value)
» maybe helpful, maybe not
» mistake might propagate before causing error
» mistake unnoticed — invalid output data / unwanted
operation

Related Work

On one hand POSIX and some strict implementations e.g. dash.
alternative shell implementations...

> Zsh
» Fish

» PowerShell
» NuShell
» Elvish

>

for 30years, bash remained dominant

Related Work

» ShellCheck

vidar@vidarholen

In WYSLH ipt lme 71

vidar@vidarholen

Source: https://github.com/koalaman/shellcheck

https://github.com/koalaman/shellcheck

Requirements
Concept

> static typechecking
> applicable to existing utility programs

Requirements
Concept

Example

Show three least recently accessed directories in PATH
echo -n $PATH
| xargs =d7 stat -c %X, %n
| sort —n

| head -3

| cut -d, —-f2

Requirements
Concept

Example

Show three least recently accessed directories in PATH
stdin-type: -

echo -n SPATH stdout-type: (Seq Path)

| xargs =d7 stat -c %X, %n

| sort —-n

| head -3

| cut -d, —-f2

Requirements

Concept
Example
Show three least recently accessed directories in PATH
stdin-type: -
echo -n SPATH stdout-type: (Seq Path)

stdin-type: (Seq Path)
| xargs =dT stat -c %X,%n stdout-type: (Seq Date, Path)

| sort —-n

| head -3

| cut -d, —-f2

Ladder Types

Concept

> Intuition: capture 'represented-as’ relation of layered
encodings.

Ladder Types

Concept

> Intuition: capture 'represented-as’ relation of layered
encodings.

» Formally: new type-constructor T1 ~ T>

Ladder Types

Concept

> Intuition: capture 'represented-as’ relation of layered
encodings.

» Formally: new type-constructor T1 ~ T>

Example

(Seq Path)

~ (Seq (Seq Char))
~ (SepSeq Char ")
~ (Seq Char)

Ladder Types

Concept

Example

echo -n $PATH

| xargs =d7T stat -c %X, %n
| sort —-n

| head -3

| cut -d, —-f2

Ladder Types

Concept

Example

echo —-n SPATH

| xargs =d7 stat -c %X, %n
| sort —n
| head -3

| cut -d, —-f2

stdin-type: -

stdout-type: (Seq Path)
~ (Seq (Seq Char))

~ (SepSeq Char ')

~ (Seq Char)

Ladder Types

Concept

Example

echo —-n SPATH

| xargs =d7 stat -c %X, %n

| sort —-n

| head -3

stdin-type: -

stdout-type: (Seq Path)

~ (Seq (Seq Char))

~ (SepSeq Char ')

~ (Seq Char)

stdin-type: (Seq Path)

~ (Seq (Seq Char))

~ (SepSeq Char ’\n’)

~ (Seq Char)

stdout-type: (Seq Date, Path)

Ladder Types

Concept

Example

echo —-n SPATH

| xargs —-d: stat -c %X, %n

| sort —-n

| head -3

stdin-type: -

stdout-type: (Seq Path)

~ (Seq (Seq Char))

~ (SepSeq Char ')

~ (Seq Char)

stdin-type: (Seq Path)

~ (Seq (Seq Char))

~ (SepSeq Char ')

~ (Seq Char)

stdout-type: (Seq Date, Path)

Evaluation + Demo

1. cat foo | xargs cp bar

2. printf ’%s: %s\n’ foo bar

3. echo $PATH | xargs =4 stat -c %x

4. find | xargs stat -c 4¥hy | sort -n | head -3

5. find | xargs stat -c %Y | sort =m | head -3

6. 1s -1 *.log | xargs rm

7. date +#S+Js | xargs expr 2 +

8. find . -printf ’%Tb\n’ | sort -M-m | uniq

TC | Runtime Error | Caught by Ladder | Caught by
Typing? ShellCheck?

1 miss. operand | no yes

2 - no yes

3 file not found | yes no

4 - yes no

5 - no no

6 invalid option | yes no

7 - no no

8 - yes no

Summary
Problem:

» combination of incompatible
processes

» invalid data formats in pipelines

» multiple possible
representations of same
concept

Goal:

» static typechecking

> preserve functionality of POSIX
shell & utilities

Ladder-Types:

Date

~ (TimeSince UnixEpoch)
~ (Duration Seconds)
~N

~ (PosInt 10 BigEndian)
~ (Seq (Digit 10))

~ (Seq Ascii)

~ (Seq Byte)

» improved robustness &
debugability

Source Repo

» https://github.com/michaelsippel/ltsh
> https://github.com/michaelsippel/lib-laddertypes

https://github.com/michaelsippel/ltsh
https://github.com/michaelsippel/lib-laddertypes

Ladder Types

Concept

Definition (Ladder-Type)
Given a set of base-types B, the set of ladder-types' denoted T(B)
is inductively defined to contain terms of the following form:

» 7 (Atomic Type) where 7 € B

» (0 1) (Type Application) with o and 7 types

» 71 ~ 7 (Ladder Type) with types 71 and 7

» 71 — 7 (Function Type) where 71 and 7 are types

restricted to monotypes, i.e. no type-variables for now

Ladder Types

Concept

Definition (Type Equivalence)

The relation =C T(B) x T(B) is defined to be the reflexive,
transitive and symmetric closure over the following equation which
defines distributivity of ~ over (...):

(0 7~7)Y=(0c 7)~{(c T)

Definition (Flatness)

A type term 7 is flat, if none of its subterms is a ladder type.

Definition (Ladder Normal Form)

A type term 7 is in Ladder Normal Form (LNF) if either 7 is flat or
T is a ladder type 7 = 71 ~ 75 where 7y is flat and 7 is in LNF.

Ladder Types

Concept

Example
Consider the following two equivalent types:
» (Seq (Digit 10)) ~ (Seq Char) is in LNF
» (Seq (Digit 10) ~ Char) is not, since there occurs a

ladder-type constructor inside a parameter application. LNF
can be reached by applying —p once.

Ladder Types

Concept

Example
Consider the following two equivalent types:
» (Seq (Digit 10)) ~ (Seq Char) is in LNF
» (Seq (Digit 10) ~ Char) is not, since there occurs a

ladder-type constructor inside a parameter application. LNF
can be reached by applying —p once.

Corollary

It follows from lemma 77, that exhaustive application of the
rewrite rule —p yields the unique ladder-normal-form of the input
term in every case. Thus, without loss of generality we can assume
that all types are in normal form.

Ladder Types

Concept

~ is distributive over (...)
Example
Consider the following two equivalent types:
> (Seq (Digit 10)) ~ (Seq Char) isin LNF

» (Seq (Digit 10) ~ Char) is not, since there occurs a
ladder-type constructor inside a parameter application.

Typed Process Invocations
Concept

Example
date +%s has stdout-type

> Date
~ (TimeSince UnixEpoch)
~ (Duration Seconds)
~N
~ (PosInt 10 BigEndian)
~ (Seq (Digit 10) ~ Ascii ~ Byte)

Typed Process Invocations
Concept

Example
date +%s has stdout-type

> Date
~ (TimeSince UnixEpoch)
~ (Duration Seconds)
~N
~ (PosInt 10 BigEndian)
~ (Seq (Digit 10) ~ Ascii ~ Byte)

. in Ladder-Normal Form:

> Date
~ (TimeSince UnixEpoch)
~ (Duration Seconds)
~N
~ (PosInt 10 BigEndian)
~ (Seq (Digit 10))
~ (Seq Ascii)
~ (Seq Byte)

Typed Process Invocations
Concept

» assign ladder-type per filedescriptor
» (alternatively, fd may remain untyped)

> types may depend on process arguments & environment

Type Inference
Concept

Let A,B be process invocations...

» For a pipeline A | B to be valid, the stdout-type of A must be
compatible with stdin-type of B,
i.e. A's stdout-type must be a subtype of B’s stdin-type,

» A | B inherits stdin-type from A
» A | B inherits stdout-type from B

Typecheck Algorithm

Concept

Example
Pi|Py|Ps...
> iterate over pipeline

» check subtyping-relation of stdout-type and stdin-type
» abort if stdout-type is no subtype of stdin-type

Typing Assertions

Implementation

» infinitely many process invocations
» group by regexp (not ideal, but easy implementation)

» for each regexp-command-pattern define type per
filedescriptor

.zshrc

Implementation

preexec() {
~/syntaxAlchemist/target/release/shell \
--check-expr="8§1"

