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Tasks May Crash Due to (Language) Exception

• Language exception
• Rust panic, C++ std::runtime_error, etc.

• Various sources of exception
• Bugs in program code

• Failed assertions

• Transient hardware error

• Embedded systems pose greater challenges
• Unattended

• Mission critical
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Recover by Unwinding & Restarting

• Reclaim resources by unwinding a task’s stack.
• Force function returns out of main().

• Destruct initialized objects.

• Resume execution by restarting the task.
• Run again from main().

• Applicable to soft real-time systems.
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How Stack Unwinding works
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Unwinder forces return until catch_unwind

fn f() {
    catch_unwind(|| g());
    // Other code
}

fn g() {
    let x = Box::new(42);
    h();
    // Other code
}

fn h() {
    let r = cur_task_ref();
    panic!();
    // Other code
}
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Challenges of Unwinding on Embedded Systems

• Storage overhead
• Unwinder logic, landing pads, exception table

• Up to 5x size increase

• Rust panic’s simplicity: only Exception type, always fatal, no re-throw, etc.

• Arm EHABI more compact exception table format

• Performance overhead
• Unwinder interpreting exception table

• Up to 1000x slow down

• Concurrent restart-able task abstraction (facilitated by Rust)
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Hopter: An Embedded OS
Capable of Recovering from Panic
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RCB Supports Recovery from Panic

• Reliable Computing Base (RCB)

• Can recover panics from components above RCB
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Task A’

Acceleration by Concurrent Task Restart

• Start a cloned task from entry() while unwinding the panicked one.

• Unwinding uses otherwise idle CPU time.
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Restartable Task Abstraction

pub fn create_restartable_task<F, A>(
    entry_closure: F, entry_argument: A,

F:  Clone + Send + Sync
A: Clone + Send + Sync

Clone: safe to duplicate
Send: safe to move across task context
Sync: safe to access from multiple task context

Application
Developer
Supply
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Restartable Task Abstraction – Continued

fn restartable_task_entry_trampoline<F, A>(

    catch_unwind_with_arg( 
        entry_closure.clone(),
        entry_argument.clone());

OS catches the panic outside of task’s entry function.
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Priority Inheritance During Unwinding

fn trampoline() {
    catch_unwind(|| entry());
    // Other code
}

static S: Mutex<T>
    = Mutex::new(T::new());

fn entry() {
    let s = S.lock();
    // Work on `s`
    panic!();
}
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Rust Facilitates Concurrent Task Restart

• Rust precludes race conditions.
• Between panicked and restarted tasks, accessing static variables.

• Safe Rust disallows mutable static variables and requires Sync trait.

• ➔ Must use Mutex around mutable static variables or atomic types

• ➔ Mutex priority inheritance works as normal
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Rust Facilitates Concurrent Task Restart

• Rust precludes race conditions.
• Between panicked and restarted tasks, accessing static variables.

• Safe Rust disallows mutable static variables and requires Sync trait.

• ➔ Must use Mutex around mutable static variables or atomic types

• ➔ Mutex priority inheritance works as normal

• Rust disambiguates fatal exception.
• Rust panic is always fatal.

• C++ exception not always fatal: std::stoi() throws 
std::invalid_argument().

➔ Concurrent restart only makes sense for fatal exception.
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Evaluation with a Flying Drone
An Example of Soft Real-time System
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Running Flight Control Application on Hopter

• Crazyflie 2.1

• COTS miniature drone

• Originally with FreeRTOS
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Can Sustain Panics from Task & IRQ Handler

• Put panic!() in task’s code

• Put panic!() in PendSV handler
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Price for unwinding

• 2.6% more CPU usage after enabling unwinding
• Precluded compiler optimizations

• 26.0% storage overhead
• Unwinder logic, landing pads, exception table
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Conclusions

• Panic recovery via unwinding is feasible on embedded systems.

• Soft real-time constraint can be met.

• Rust reduces unwinder complexity.

• Rust facilitates concurrent task restarts.

• 2.6% CPU overhead, 26.0% storage overhead when flying a drone.
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