
Panic Recovery in Rust-based
Embedded Systems

Zhiyao Ma, Guojun Chen, Lin Zhong

Efficient Computing Lab

Yale University

Tasks May Crash Due to (Language) Exception

• Language exception
• Rust panic, C++ std::runtime_error, etc.

• Various sources of exception
• Bugs in program code

• Failed assertions

• Transient hardware error

• Embedded systems pose greater challenges
• Unattended

• Mission critical

2

Recover by Unwinding & Restarting

• Reclaim resources by unwinding a task’s stack.
• Force function returns out of main().

• Destruct initialized objects.

• Resume execution by restarting the task.
• Run again from main().

• Applicable to soft real-time systems.

3

How Stack Unwinding works

4

Unwinder forces return until catch_unwind

fn f() {
 catch_unwind(|| g());
 // Other code
}

fn g() {
 let x = Box::new(42);
 h();
 // Other code
}

fn h() {
 let r = cur_task_ref();
 panic!();
 // Other code
}

f()

g()

h()

Heap

OS
Resource

5

Stack

Unwinder forces return until catch_unwind

fn f() {
 catch_unwind(|| g());
 // Other code
}

fn g() {
 let x = Box::new(42);
 h();
 // Other code
}

fn h() {
 let r = cur_task_ref();
 panic!();
 // Other code
}

Stack
Unwinder

f()

g()

h()

Heap

OS
Resource

Landing Pad

Landing Pad

Landing Pad

Exception
Table

Invoke LPs
Restore Regs

6

Stack

Unwinder forces return until catch_unwind

Stack
Unwinder

f()

g()

Heap

OS
Resource

Landing Pad

Landing Pad

Landing Pad

Exception
Table

Invoke LPs
Restore Regs

fn f() {
 catch_unwind(|| g());
 // Other code
}

fn g() {
 let x = Box::new(42);
 h();
 // Other code
}

fn h() {
 let r = cur_task_ref();
 panic!();
 // Other code
}

7

Stack

Unwinder forces return until catch_unwind

Stack
Unwinder

f() Heap

OS
Resource

Landing Pad

Landing Pad

Landing Pad

Exception
Table

Invoke LPs
Restore Regs

fn f() {
 catch_unwind(|| g());
 // Other code
}

fn g() {
 let x = Box::new(42);
 h();
 // Other code
}

fn h() {
 let r = cur_task_ref();
 panic!();
 // Other code
}

8

Stack

Unwinder forces return until catch_unwind

Stack
Unwinder

f() Heap

OS
Resource

Landing Pad

Landing Pad

Landing Pad

Exception
Table

Invoke LPs
Restore Regs

Compiler Generated

fn f() {
 catch_unwind(|| g());
 // Other code
}

fn g() {
 let x = Box::new(42);
 h();
 // Other code
}

fn h() {
 let r = cur_task_ref();
 panic!();
 // Other code
}

9

Stack

Challenges of Unwinding on Embedded Systems

• Storage overhead
• Unwinder logic, landing pads, exception table

• Up to 5x size increase

• Rust panic’s simplicity: only Exception type, always fatal, no re-throw, etc.

• Arm EHABI more compact exception table format

• Performance overhead
• Unwinder interpreting exception table

• Up to 1000x slow down

• Concurrent restart-able task abstraction (facilitated by Rust)

10

Hopter: An Embedded OS
Capable of Recovering from Panic

11

RCB Supports Recovery from Panic

• Reliable Computing Base (RCB)

• Can recover panics from components above RCB

Context Switch Mem Allocator Stack Unwinder

Mutex Semaphore Channel
Sync
Primitives

Task A Task B Task C

IRQ X

IRQ Y

IRQ Z

RCB

Application

12

Task A’

Acceleration by Concurrent Task Restart

• Start a cloned task from entry() while unwinding the panicked one.

• Unwinding uses otherwise idle CPU time.

Task A

entry()
foo()
bar()

entry()
foo()
bar()Reduced Priority

13

Restartable Task Abstraction

pub fn create_restartable_task<F, A>(
 entry_closure: F, entry_argument: A,

F: Clone + Send + Sync
A: Clone + Send + Sync

Clone: safe to duplicate
Send: safe to move across task context
Sync: safe to access from multiple task context

Application
Developer
Supply

14

Restartable Task Abstraction – Continued

fn restartable_task_entry_trampoline<F, A>(

 catch_unwind_with_arg(
 entry_closure.clone(),
 entry_argument.clone());

OS catches the panic outside of task’s entry function.

15

Priority Inheritance During Unwinding

fn trampoline() {
 catch_unwind(|| entry());
 // Other code
}

static S: Mutex<T>
 = Mutex::new(T::new());

fn entry() {
 let s = S.lock();
 // Work on `s`
 panic!();
}

trampoline()

entry()

trampoline()

entry()

Task A Task A’

Unwinding

Priority: Lowest

Running

Priority: Medium

s s

16

StackStack

Priority Inheritance During Unwinding

fn trampoline() {
 catch_unwind(|| entry());
 // Other code
}

static S: Mutex<T>
 = Mutex::new(T::new());

fn entry() {
 let s = S.lock();
 // Work on `s`
 panic!();
}

trampoline()

entry()

trampoline()

entry()

Task A Task A’

Unwinding

Priority: Medium

Running

Priority: Medium

s s

17

StackStack

Priority Inheritance During Unwinding

fn trampoline() {
 catch_unwind(|| entry());
 // Other code
}

static S: Mutex<T>
 = Mutex::new(T::new());

fn entry() {
 let s = S.lock();
 // Work on `s`
 panic!();
}

trampoline()

entry()

trampoline()

Task A Task A’

Unwinding

Priority: Lowest

Running

Priority: Medium

s

18

StackStack

Rust Facilitates Concurrent Task Restart

• Rust precludes race conditions.
• Between panicked and restarted tasks, accessing static variables.

• Safe Rust disallows mutable static variables and requires Sync trait.

• ➔ Must use Mutex around mutable static variables or atomic types

• ➔ Mutex priority inheritance works as normal

19

Rust Facilitates Concurrent Task Restart

• Rust precludes race conditions.
• Between panicked and restarted tasks, accessing static variables.

• Safe Rust disallows mutable static variables and requires Sync trait.

• ➔ Must use Mutex around mutable static variables or atomic types

• ➔ Mutex priority inheritance works as normal

• Rust disambiguates fatal exception.
• Rust panic is always fatal.

• C++ exception not always fatal: std::stoi() throws
std::invalid_argument().

➔ Concurrent restart only makes sense for fatal exception.

20

Evaluation with a Flying Drone
An Example of Soft Real-time System

21

Running Flight Control Application on Hopter

• Crazyflie 2.1

• COTS miniature drone

• Originally with FreeRTOS

4 invoke

1 start transfer

Control

position, velocity,
attitude

Motors STM32F405RG

Optical Flow

Laser Time
of Flight

Accelerometer
& Gyroscope

PMW3901

VL53L1x

BMI088

State Estimator

Stabilizer

height

horizonal
displacement

6-axis
inertial

Commander

control
command

Data
Channels

GPIOs

Tasks

Peripherals

DMASensor

DMA IRQ
Handler

STM32F405RG

Sensor Task

Data Buffer

Semaphore
5 signal

3 data write

2 data read

DMA
Data write

Objects

Flight control application overview

Sensor task zoom in

Interrupt
Handlers

PendSV
Handler

22

Can Sustain Panics from Task & IRQ Handler

• Put panic!() in task’s code

• Put panic!() in PendSV handler

4 invoke

1 start transfer

Control

position, velocity,
attitude

Motors STM32F405RG

Optical Flow

Laser Time
of Flight

Accelerometer
& Gyroscope

PMW3901

VL53L1x

BMI088

State Estimator

Stabilizer

height

horizonal
displacement

6-axis
inertial

Commander

control
command

Data
Channels

GPIOs

Tasks

Peripherals

DMASensor

DMA IRQ
Handler

STM32F405RG

Sensor Task

Data Buffer

Semaphore
5 signal

3 data write

2 data read

DMA
Data write

Objects

Flight control application overview

Sensor task zoom in

Interrupt
Handlers

PendSV
Handler

23

24

Price for unwinding

• 2.6% more CPU usage after enabling unwinding
• Precluded compiler optimizations

• 26.0% storage overhead
• Unwinder logic, landing pads, exception table

25

Conclusions

• Panic recovery via unwinding is feasible on embedded systems.

• Soft real-time constraint can be met.

• Rust reduces unwinder complexity.

• Rust facilitates concurrent task restarts.

• 2.6% CPU overhead, 26.0% storage overhead when flying a drone.

26

	Main
	Slide 1: Panic Recovery in Rust-based Embedded Systems
	Slide 2: Tasks May Crash Due to (Language) Exception
	Slide 3: Recover by Unwinding & Restarting
	Slide 4: How Stack Unwinding works
	Slide 5: Unwinder forces return until catch_unwind
	Slide 6: Unwinder forces return until catch_unwind
	Slide 7: Unwinder forces return until catch_unwind
	Slide 8: Unwinder forces return until catch_unwind
	Slide 9: Unwinder forces return until catch_unwind
	Slide 10: Challenges of Unwinding on Embedded Systems
	Slide 11: Hopter: An Embedded OS Capable of Recovering from Panic
	Slide 12: RCB Supports Recovery from Panic
	Slide 13: Acceleration by Concurrent Task Restart
	Slide 14: Restartable Task Abstraction
	Slide 15: Restartable Task Abstraction – Continued
	Slide 16: Priority Inheritance During Unwinding
	Slide 17: Priority Inheritance During Unwinding
	Slide 18: Priority Inheritance During Unwinding
	Slide 19: Rust Facilitates Concurrent Task Restart
	Slide 20: Rust Facilitates Concurrent Task Restart
	Slide 21: Evaluation with a Flying Drone
	Slide 22: Running Flight Control Application on Hopter
	Slide 23: Can Sustain Panics from Task & IRQ Handler
	Slide 24
	Slide 25: Price for unwinding
	Slide 26: Conclusions

