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Long-term Research Goal

Enhance reliability of concurrent systems software
by designing and implementing low-level languages
with static guarantees for absence of certain errors
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This Talk is About Deadlock Avoidance

In a low-level language suitable for systems programming
» at the C level of abstraction
» unstructured locking primitives (1ock/unlock)
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This Talk is About Deadlock Avoidance

In a low-level language suitable for systems programming
» at the C level of abstraction
» unstructured locking primitives (1ock/unlock)

Tool for C/pthreads programs

» with a static analysis component that annotates
programs with confinuation effects of locks and

» links them with a runtime system (pthread library
replacement) that knows how to avoid deadlocks
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This Talk is About Deadlock Avoidance

In a low-level language suitable for systems programming
» at the C level of abstraction

» unstructured locking primitives (1ock/unlock)

Tool for C/pthreads programs

» with a static analysis component that annotates
programs with confinuation effects of locks and

» links them with a runtime system (pthread library
replacement) that knows how to avoid deadlocks

Evaluation results
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What is a Deadlock?

» two or more threads
form a circular chain

» each thread waits for
a lock held by the
next thread in chain
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Approaches to Deadlock Freedom

Prevention Detection
and recovery

“correct by transactional
design” semantics
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Approaches to Deadlock Freedom

Prevention Detection Avoidance
and recovery

“correct by transactional predict possible
design” semantics deadlock
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Deadlock Prevention: A Static Approach

Key idea:
» impose a single global lock order
» check that all threads respect this lock order
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Deadlock Prevention: A Static Approach

Key idea:
» impose a single global lock order
» check that all threads respect this lock order

Most type-based approaches fall into this strategy
» a type and effect system is used
» effects record the lock acquisition order

However, a global lock order is restrictive:

{ lock(x); ... Tock(y); ... } || {lock(y); ... Lock(x); ...}

x<y y<x

» No single global order = reject program
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Deadlock Avoidance: A Hybrid Approach

Basic idea:

» stafically: for each lock operation compute information
that will allow the computation of its “future lockset”

» dynamically: during runfime check that the “future
lockset” is available before granting the lock

Future lockset of a lock: the set of locks that will be obtained
before this lock is released
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Deadlock Avoidance Idea on an Example

{lock(x); ... 2lock(y); ...} || {Lock(y); ... lock(x); ...}
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Deadlock Avoidance Idea on an Example

{Tocky, (x); ... Lockp(y); ...} || {lockyyy (y); ... lockp(x); ...}

only y is locked here only x is locked here
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Deadlock Avoidance Idea on an Example

{Tocky, (x); ... Lockp(y); ...} [| {Llockiy (y); ... Tocky(x); ...}

only y is locked here only x is locked here
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» thread 1 tries to lock x, with future lockset {y}
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Deadlock Avoidance Idea on an Example

{Tocky, (x); ... lockp(y); ...} || {lockyyy (y); ... lockp(x); ...}

only y is locked here only x is locked here

At run-time, the lock annofation is checked
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» thread 2 tries to lock y, with future lockset {x}
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Deadlock Avoidance Idea on an Example

{Locky, (x); ... Lockp(y); ...} || {Locky /()i ... lockp(x); ...}

only y is locked here only x is locked here

At run-fime, the lock annotation is checked
» thread 1 tries to lock x, with future lockset {y}  success!
» thread 2 tries to lock y, with future lockset {x} block!
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Deadlock Avoidance Idea on an Example

{Tocky, (x); ... Lockp(y); ...} || {Locky ()i ... lockp(x); ...}

only y is locked here only x is locked here

At run-time, the lock annofation is checked
» thread 1 tries to lock x, with future lockset {y}  success!
» thread 2 tries to lock y, with future lockset {x} block!

Lock v is available, but lock x is held by thread 1
» granting y to thread 2 may lead to a deadlock !

P Gerakios, N. Papaspyrou, K. Sagonas, P Vekris Dynamic Deadlock Avoidance in Low-level Languages



Code from Linux’s EFS

linux/fs/efs/namei.c:

59 efs_lookup(struct inode *dir, struct dentry *dentry) {

60 efs_ino_t inodenum;

61 struct inode * inode = NULL;

62

63 lock_kernel();

64 inodenum = efs_find_entry(dir, dentry->d_name.name,
dentry->d_name.len);

65 if (inodenum) {

66 if (!(inode = iget(dir->i_sb, inodenum))) {

67 unlock_kernel();

68 return ERR_PTR(-EACCES) ;

69 }

70 }

71 unlock_kernel();

72

73 d_add(dentry, inode);

74 return NULL;

75}
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More Code from Linux

linux-2.6-kdbg.git/fs/udf/dir.c:

188 static int udf_readdir(struct file *filp, ..., filldir_t filldir)
189 {

190 struct inode *dir = filp->f_path.dentry->d_inode;

191 int result;

192

193 lock_kernel();

194

195 if (filp->f_pos == 0) {

196 if (filldir(diremt, ".", 1, ..., dir->i_ino, DT_DIR) < 0) {
197 unlock_kernel();

198 return O;

199 }

200 filp->f_pos++;

201 }

202

203 result = do_udf_readdir(dir, filp, filldir, dirent);

204 unlock_kernel();

205 return result;

206 ¥
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Locking Patterns
Block
Structured

foo(a, b) {
lock(a);

lock(b);

unlock(b);
unlock(a);

}

P Gerakios, N. Papaspyrou, K. Sagonas, P Vekris Dynamic Deadlock Avoidance in Low-level Languages 11/26



Locking Patterns

Block Stack Based
Structured Same Function

foo(a, b) { foo(a) {

lock(a); lock(a);
lock(b); if ()4
o lock(b);
unlock(b); unlock(b);
unlock(a); unlock(a);
} return;
}
unlock(a);
return;

}
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Locking Patterns

Block Stack Based Stack Based
Structured Same Function Diff Function

foo(a, b) { foo(a) { bar(x) {

lock(a); lock(a); Lol 7
Lock(b); if (.. ] }
lock(b);
foo(a
unlOCk(b)} unlock(b); ba(r()g§'
unlock(a); unlock(a); if (..
} return,; unlock(a);
} return;
unlock(ll)} } .
return; unlock(a);
} return;

}
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Locking Patterns

Block Stack Based
Structured  Same Function
foo(a, b) { foo(a) {
lock(a); Llock(a);
lock(b); EACDA!
lock(b);
unlock(b); unlock(b);
unlock(a); unlock(a);
} return;
}
unlock(a);
return;
}
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Stack Based
Diff Function

bar(x) {
lock(x);

}
foo(a) {

bar(a);

if (...) {
unlock(a);
return;

}

unlock(a);
return,;

}

Unstructured

foo(a, b) {
lock(a);
lock(b);

unlock(a);

unlock(b);

}
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How C/pthreads Programs use Locks?

Using a big codebase (~ 100 big projects using C/pthreads),
we gathered statistics on locking patterns

] Locking Pattern | Frequency |
Block Structured 36.67%
Stack-Based (same function) 32.22%
Stack-Based (diff function) 20.00%
Unstructured 11.11%

] Total \ 100.00% \
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Our Approach

To support unstructured locking, we have to
» track the order of 1ock and unlock operations
» annotate lock operations with a “continuation effect”

foo(x, y, z) { Lok, v -y .y 1(X); x:i=x+42;
10Ck[x7,z+,zf,}/f] (y)/ yi=y+x
unlock(x);
lock._ , |(2); z:=z+y;
unlock(z);
unlock(y);

-}

bar() { ... foo(a,a,b); ... }
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Our Approach

To support unstructured locking, we have to
» track the order of 1ock and unlock operations
» annotate lock operations with a “continuation effect”

10Ck[n+,nf,b+,bf,afJ (a); a:=a+42;

10Ck[117,b+,baﬂf] (&l),‘ a:=a+a;
unlock(a);
locky, . 1(b); b:=b+a;
unlock(b);
unlock(a)

After substitution, the continuation effects are sfill valid!
Future locksets are then correctly calculated
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Lockset Calculation

Compute future lockset at run-time using lock annotatfions

Input: a+ a+, a—, b+, b—, a—, ...
N~
lock operation continuation effect
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Lockset Calculation

Compute future lockset at run-time using lock annotatfions

Input: a+ a+, a—, b+, b—, a—, ...
N~
lock operation continuation effect

» start with an empty future lockset
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Lockset Calculation

Compute future lockset at run-time using lock annotations

Input: a+ a+, a—, b+, b—, a—, ...
N~
lock operation continuation effect

» start with an empty future lockset

» fraverse the continuation effect until the matching
unlock operation (while there are more o+ than a—)
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Lockset Calculation

Compute future lockset at run-time using lock annotations
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Lockset Calculation

Compute future lockset at run-time using lock annotations

Input: a+ a+, a—, b+, b—, a—, ...
N~
lock operation continuation effect

» start with an empty future lockset

» fraverse the continuation effect until the matching
unlock operation (while there are more o+ than a—)

» add the locations being locked to the future lockset

lockset = { }
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Lockset Calculation

Compute future lockset at run-time using lock annotations

Input: a+ a+, a—, b+, b—, a—, ...
N~
lock operation continuation effect

» start with an empty future lockset

» fraverse the continuation effect until the matching
unlock operation (while there are more o+ than a—)

» add the locations being locked to the future lockset

lockset={a }
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Lockset Calculation

Compute future lockset at run-time using lock annotations
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Lockset Calculation

Compute future lockset at run-time using lock annotations
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Lockset Calculation

Compute future lockset at run-time using lock annotations

Input: a+ a+, a—, b+, b—, a—, ...
N~
lock operation continuation effect

» start with an empty future lockset

» fraverse the continuation effect until the matching
unlock operation (while there are more o+ than a—)

» add the locations being locked to the future lockset
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Lockset Calculation

Compute future lockset at run-time using lock annotations

Input: a-+ a+, a—, b+, b—, a—, ...
N~
lock operation continuation effect

» start with an empty future lockset

» fraverse the continuation effect until the matching
unlock operation (while there are more o+ than a—)

» add the locations being locked to the future lockset
lockset={ a, b }

» but effects must not be intra-procedural !

» what happens if the matching unlock operation occurs
after the function returns?
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”
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» When a function is applied, the continuation effect is
pushed on a run-fime stack
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

void £() { 0t
lOCkH (Z); }

void g() { locky, , (x);

lockh/,] (y),
unlock(y); }

m() { fOr—, |, unlock(z); unlock(x); }
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

void () { 80 Stack
lOCkH (Z); }

. Z—/ x_
void g() { locky, , (x);

lockh/,] (y),
unlock(y); }

m() { fOr—, |, unlock(z); unlock(x); }
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

v0id £0) { 80e-y Stack
lOCkH (Z); } Z+
z—, x—

void g() { locky, , (x);
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

void () { 80 Stack
lOCkH (Z); } Z+
z—, x—

void g() { lock,. , (x);

lockh/,] (y),
unlock(y); }

m() { fOr—, |, unlock(z); unlock(x); }
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

void f() { g():zﬂ; STOL
lOCkH (Z); } zt
void g() { lock,. , (x); R
Locky, |(y); Lock/Continuation
unloék(y)} } x+ y+, y—
m() { fOr, |; unlock(z); unlock(x); } lockset = { }
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

void f() { §0)1.. Stack
lOCkH (Z); } Z+
i z—, X—
void g() { lock,. , (x); LS
locky, |(y); Lock/Continuation
unlock(y); } x+ y+, y—

m() { f()-— «; unlock(z); unlock(x);} lockset={y }
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”
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lOCkH (Z); } Z+
; z—, X—
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» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

void () { g0). Stack
lOCkH (Z); } ZAF
; z—, X—
void g() { lock,. , (x); LS
locky, |(y); Lock/Continuation
unlock(y); } x+ y+, y—

m() { f().— «; unlock(z); unlock(x);} lockset={y, z}
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Inter-procedural Effects

» Function applications are also annotated with a
“continuation effect”

» When a function is applied, the continuation effect is
pushed on a run-fime stack

» Lockset calculation may examine the stack

void f() { §0)1.. Stack
lOCkH (Z); } Z+
i z—, x—
void g() { lock,. , (x); LS
locky, |(y); Lock/Continuation
unlock(y); } x+ y+, y—

m() { f()-— «; unlock(z); unlock(x);} lockset={y, z}
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Conditional Expressions

if (e) then e; else e;
» How can we type-check conditionals ?
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if (e) then e; else e;
» How can we type-check conditionals ?
» Consider:
lock(x);
if (condition) {
lock(y); ...; unlock(y); effect: y+, y—

effect: empty
unlock(x);
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Conditional Expressions

if (e) then e; else e;
» How can we type-check conditionals ?
» Consider:
lock(x);
if (condition) {
lock(y); ...; unlock(y); effect: y+, y—
effect: empty
unlock(x);

» Conservative, require: effect(e;) = effect(er)
» We require: overall(effect(e;)) = overall(effect(ey))

» See TLDI'11 paper for treatment of loops/recursion
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A Tool for C/pthreads

» Input: C program annotation free
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A Tool for C/pthreads

» Input: C program annotation free

» At compile time

» perform a field-sensitive, context-sensitive pointer analysis
» infer annotations/effects
» instrument code with continuation effects

» Link program with a run-time system

» overrides pthread library
» utilizes the effects in the code to
» compute future locksets
» grant locks in a way that avoids deadlocks
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Static Analysis: Inference

» Call-graph: bottom-up traversal

P Gerakios, N. Papaspyrou, K. Sagonas, P Vekris Dynamic Deadlock Avoidance in Low-level Languages 18 /26



Static Analysis: Inference

» Call-graph: bottom-up traversal
» Loops:
» may have any number of lock/unlock operations

» lock counts upon loop exit must equal counts before the
loop entry
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» Call-graph: bottom-up traversal
» Loops:
» may have any number of lock/unlock operations

» lock counts upon loop exit must equal counts before the
loop entry

» Indirect calls: effect((*f)(x)):
» pointer analysis f — {c1,...,cn}
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Static Analysis: Inference

v

Call-graph: bottom-up traversal
Loops:

» may have any number of lock/unlock operations
» lock counts upon loop exit must equal counts before the
loop entry

Indirect calls: effect((xf)(x)):
» pointer analysis f — {c1,...,cn}
» effect((xf)(x)) = effect(c(x))? ... ? effect(cy(x))

Pointer analysis for lock handle pointers

v

v

v
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Static Analysis: Status and Limitations

Support for:

» pointers to global lock handles

» dynamically allocated lock handles (heap + stack)
Requires no programmer-supplied annotations of any sort
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Static Analysis: Status and Limitations

Support for:

» pointers to global lock handles

» dynamically allocated lock handles (heap + stack)
Requires no programmer-supplied annotations of any sort

No support for:
» non C code
» non-local jumps

» pointer arithmetic on pointers containing or poinfing to
locks
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Locking Algorithm

Upon a lock(x) with future lockset L:
1. Check whether all locks in L are available
2. If not, wait

3. Otherwise, fentatively acquire lock x
4. Check again L: if any lock in L is unavailable

» release x
» wait on that unavailable lock
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Evaluation: On bigger C programs

benchmark runin user system elapsed ratio
® 0.002 0758  33.450
curlfpfs C+da 0.000 0680 32862 0782
C 63.660 3910 49.050
flams C+da  67.860 3640 49000 1008
raton C 545311 4631341 4138070 | o
9 C+da 5334921 5020.346 4625670
e c 124.846 0.126 8270 1 006
9 C+da 124467 0.126 8240
c 0.000 0890  20.880
shfs-fuse L 4q 0.000 0950 20880 000
ore C 13238 11.639 5190 . o0
grep C+da  14.801  11.655 6180

Performance of C vs. C+da (C plus deadlock avoidance)
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Evaluation: Cosmic Fractal Frames

flan3 workload
188 T T T T

Urilgi.nal C prolgran —H—
Instrunented C progran —E—

88 - q

68 [ q

elapzed time in seconds
o
[ 4
X

28 1

a L L L L L L
a 5 18 15 20 25 38 35

nunber of collaborating threads
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Evaluation: File System over SSH

sshfs workload

8a
j j j j l]r.il.gi.nal C prolgran —H—
Instrunented C progran —E—

elapzed time in seconds

a L L L L L L
a 18 28 38 48 50 68 7o

nunber of concurrent read operations
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Evaluation: Dining Philosophers

philozophers uworkload
4.9 T T T

j Original C pll‘ogran —H—
Instrunented C pragran —E—

total nunber of times the philosophers ate {in nillions)

a L L 1 L L
a 50 168 158 280 250 388

nunber of philosophers
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Concluding Remarks

» A method that guarantees deadlock freedom

» without imposing a global lock acquisition order
» unstructured locking primitives

» A tool for C/pthreads

» completely automatic: no annotations are needed
» modest run-time overhead for instrumented programs
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Thank you!

Questions?

Dynamic Deadlock Avoidance in Low-level Languages
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