
Dynamic Deadlock Avoidance
Using Statically Inferred Effects

Kostis Sagonas1,2

joint work with

P. Gerakios1 N. Papaspyrou1 P. Vekris1,3

1 School of ECE, National Technical University of Athens, Greece
2 Dept. of Information Technology, Uppsala University, Sweden

3 Dept. of Computer Science, UC San Diego, U.S.A.

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 1 / 26

Long-term Research Goal

Enhance reliability of concurrent systems software
by designing and implementing low-level languages
with static guarantees for absence of certain errors

Prior work:
I safe multithreading in a language with shared-memory

and a common hierarchy of regions and locks

I memory safety and race freedom
I implemented in an extended Cyclone

Safety properties . . . liveness ?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 2 / 26

Long-term Research Goal

Enhance reliability of concurrent systems software
by designing and implementing low-level languages
with static guarantees for absence of certain errors

Prior work:
I safe multithreading in a language with shared-memory

and a common hierarchy of regions and locks

I memory safety and race freedom
I implemented in an extended Cyclone

Safety properties . . . liveness ?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 2 / 26

Long-term Research Goal

Enhance reliability of concurrent systems software
by designing and implementing low-level languages
with static guarantees for absence of certain errors

Prior work:
I safe multithreading in a language with shared-memory

and a common hierarchy of regions and locks

I memory safety and race freedom
I implemented in an extended Cyclone

Safety properties . . .

liveness ?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 2 / 26

Long-term Research Goal

Enhance reliability of concurrent systems software
by designing and implementing low-level languages
with static guarantees for absence of certain errors

Prior work:
I safe multithreading in a language with shared-memory

and a common hierarchy of regions and locks

I memory safety and race freedom
I implemented in an extended Cyclone

Safety properties . . . liveness ?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 2 / 26

This Talk is About Deadlock Avoidance

In a low-level language suitable for systems programming
I at the C level of abstraction
I unstructured locking primitives (lock/unlock)

Tool for C/pthreads programs
I with a static analysis component that annotates

programs with continuation effects of locks and
I links them with a runtime system (pthread library

replacement) that knows how to avoid deadlocks

Evaluation results

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 3 / 26

This Talk is About Deadlock Avoidance

In a low-level language suitable for systems programming
I at the C level of abstraction
I unstructured locking primitives (lock/unlock)

Tool for C/pthreads programs
I with a static analysis component that annotates

programs with continuation effects of locks and
I links them with a runtime system (pthread library

replacement) that knows how to avoid deadlocks

Evaluation results

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 3 / 26

This Talk is About Deadlock Avoidance

In a low-level language suitable for systems programming
I at the C level of abstraction
I unstructured locking primitives (lock/unlock)

Tool for C/pthreads programs
I with a static analysis component that annotates

programs with continuation effects of locks and
I links them with a runtime system (pthread library

replacement) that knows how to avoid deadlocks

Evaluation results

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 3 / 26

What is a Deadlock?

I two or more threads
form a circular chain

I each thread waits for
a lock held by the
next thread in chain

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 4 / 26

Approaches to Deadlock Freedom

Prevention

“correct by
design”

Detection
and recovery

transactional
semantics

Avoidance

predict possible
deadlock

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 5 / 26

Approaches to Deadlock Freedom

Prevention

“correct by
design”

Detection
and recovery

transactional
semantics

Avoidance

predict possible
deadlock

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 5 / 26

Approaches to Deadlock Freedom

Prevention

“correct by
design”

Detection
and recovery

transactional
semantics

Avoidance

predict possible
deadlock

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 5 / 26

Deadlock Prevention: A Static Approach

Key idea:
I impose a single global lock order
I check that all threads respect this lock order

Most type-based approaches fall into this strategy
I a type and effect system is used
I effects record the lock acquisition order

However, a global lock order is restrictive:

{ lock(x); . . . lock(y); . . . } || { lock(y); . . . lock(x); . . . }

I no single global order⇒ reject program

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 6 / 26

Deadlock Prevention: A Static Approach

Key idea:
I impose a single global lock order
I check that all threads respect this lock order

Most type-based approaches fall into this strategy
I a type and effect system is used
I effects record the lock acquisition order

However, a global lock order is restrictive:

{ lock(x); . . . lock(y); . . . } || { lock(y); . . . lock(x); . . . }

I no single global order⇒ reject program

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 6 / 26

Deadlock Prevention: A Static Approach

Key idea:
I impose a single global lock order
I check that all threads respect this lock order

Most type-based approaches fall into this strategy
I a type and effect system is used
I effects record the lock acquisition order

However, a global lock order is restrictive:

{ lock(x); . . . lock(y); . . . } || { lock(y); . . . lock(x); . . . }

I no single global order⇒ reject program

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 6 / 26

Deadlock Prevention: A Static Approach

Key idea:
I impose a single global lock order
I check that all threads respect this lock order

Most type-based approaches fall into this strategy
I a type and effect system is used
I effects record the lock acquisition order

However, a global lock order is restrictive:

{ lock(x); . . . lock(y); . . . }︸ ︷︷ ︸
x≤y

|| { lock(y); . . . lock(x); . . . }︸ ︷︷ ︸
y≤x

I no single global order⇒ reject program

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 6 / 26

Deadlock Avoidance: A Hybrid Approach

Basic idea:
I statically: for each lock operation compute information

that will allow the computation of its “future lockset”
I dynamically: during runtime check that the “future

lockset” is available before granting the lock

Future lockset of a lock: the set of locks that will be obtained
before this lock is released

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 7 / 26

Deadlock Avoidance Idea on an Example

{ lock(x); . . . lock(y); . . . } || { lock(y); . . . lock(x); . . . }

At run-time, the lock annotation is checked

I thread 1 tries to lock x, with future lockset {y}

success!

I thread 2 tries to lock y, with future lockset {x}

block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Deadlock Avoidance Idea on an Example

{ lock{y}(x); . . . lock∅(y); . . .︸ ︷︷ ︸
only y is locked here

} || { lock{x} (y); . . . lock∅(x); . . .︸ ︷︷ ︸
only x is locked here

}

At run-time, the lock annotation is checked

I thread 1 tries to lock x, with future lockset {y}

success!

I thread 2 tries to lock y, with future lockset {x}

block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Deadlock Avoidance Idea on an Example

{ lock{y}(x); . . . lock∅(y); . . .︸ ︷︷ ︸
only y is locked here

} || { lock{x} (y); . . . lock∅(x); . . .︸ ︷︷ ︸
only x is locked here

}

At run-time, the lock annotation is checked

I thread 1 tries to lock x, with future lockset {y}

success!

I thread 2 tries to lock y, with future lockset {x}

block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Deadlock Avoidance Idea on an Example

{ lock{y}(x); . . . lock∅(y); . . .︸ ︷︷ ︸
only y is locked here

} || { lock{x} (y); . . . lock∅(x); . . .︸ ︷︷ ︸
only x is locked here

}

At run-time, the lock annotation is checked
I thread 1 tries to lock x, with future lockset {y}

success!
I thread 2 tries to lock y, with future lockset {x}

block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Deadlock Avoidance Idea on an Example

{ lock{y}(x); . . . lock∅(y); . . .︸ ︷︷ ︸
only y is locked here

} || { lock{x} (y); . . . lock∅(x); . . .︸ ︷︷ ︸
only x is locked here

}

At run-time, the lock annotation is checked
I thread 1 tries to lock x, with future lockset {y} success!

I thread 2 tries to lock y, with future lockset {x}

block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Deadlock Avoidance Idea on an Example

{ lock{y}(x); . . . lock∅(y); . . .︸ ︷︷ ︸
only y is locked here

} || { lock{x} (y); . . . lock∅(x); . . .︸ ︷︷ ︸
only x is locked here

}

At run-time, the lock annotation is checked
I thread 1 tries to lock x, with future lockset {y} success!
I thread 2 tries to lock y, with future lockset {x}

block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Deadlock Avoidance Idea on an Example

{ lock{y}(x); . . . lock∅(y); . . .︸ ︷︷ ︸
only y is locked here

} || { lock{x} (y); . . . lock∅(x); . . .︸ ︷︷ ︸
only x is locked here

}

At run-time, the lock annotation is checked
I thread 1 tries to lock x, with future lockset {y} success!
I thread 2 tries to lock y, with future lockset {x} block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Deadlock Avoidance Idea on an Example

{ lock{y}(x); . . . lock∅(y); . . .︸ ︷︷ ︸
only y is locked here

} || { lock{x} (y); . . . lock∅(x); . . .︸ ︷︷ ︸
only x is locked here

}

At run-time, the lock annotation is checked
I thread 1 tries to lock x, with future lockset {y} success!
I thread 2 tries to lock y, with future lockset {x} block!

Lock y is available, but lock x is held by thread 1
I granting y to thread 2 may lead to a deadlock !

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 8 / 26

Code from Linux’s EFS

linux/fs/efs/namei.c :
59 efs_lookup(struct inode *dir, struct dentry *dentry) {
60 efs_ino_t inodenum;
61 struct inode * inode = NULL;
62

63 lock_kernel();
64 inodenum = efs_find_entry(dir, dentry->d_name.name,

dentry->d_name.len);
65 if (inodenum) {
66 if (!(inode = iget(dir->i_sb, inodenum))) {
67 unlock_kernel();
68 return ERR_PTR(-EACCES);
69 }
70 }
71 unlock_kernel();
72

73 d_add(dentry, inode);
74 return NULL;
75 }

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 9 / 26

More Code from Linux
linux-2.6-kdbg.git/fs/udf/dir.c :

188 static int udf_readdir(struct file *filp, ..., filldir_t filldir)
189 {
190 struct inode *dir = filp->f_path.dentry->d_inode;
191 int result;
192

193 lock_kernel();
194

195 if (filp->f_pos == 0) {
196 if (filldir(dirent, ".", 1, ..., dir->i_ino, DT_DIR) < 0) {
197 unlock_kernel();
198 return 0;
199 }
200 filp->f_pos++;
201 }
202

203 result = do_udf_readdir(dir, filp, filldir, dirent);
204 unlock_kernel();
205 return result;
206 }

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 10 / 26

Locking Patterns
Block
Structured
foo(a, b) {
lock(a);

lock(b);
. . .

unlock(b);

unlock(a);
}

Stack Based
Same Function
foo(a) {
lock(a);
if (. . .) {
lock(b);

unlock(b);

unlock(a);
return;
}
. . .
unlock(a);
return;
}

Stack Based
Diff Function
bar(x) {
lock(x);
}

foo(a) {
bar(a);
if (. . .) {
unlock(a);
return;
}
. . .
unlock(a);
return;
}

Unstructured

foo(a, b) {
lock(a);

lock(b);
. . .

unlock(a);

unlock(b);
}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 11 / 26

Locking Patterns
Block
Structured
foo(a, b) {
lock(a);

lock(b);
. . .

unlock(b);

unlock(a);
}

Stack Based
Same Function
foo(a) {
lock(a);
if (. . .) {
lock(b);

unlock(b);

unlock(a);
return;
}
. . .
unlock(a);
return;
}

Stack Based
Diff Function
bar(x) {
lock(x);
}

foo(a) {
bar(a);
if (. . .) {
unlock(a);
return;
}
. . .
unlock(a);
return;
}

Unstructured

foo(a, b) {
lock(a);

lock(b);
. . .

unlock(a);

unlock(b);
}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 11 / 26

Locking Patterns
Block
Structured
foo(a, b) {
lock(a);

lock(b);
. . .

unlock(b);

unlock(a);
}

Stack Based
Same Function
foo(a) {
lock(a);
if (. . .) {
lock(b);

unlock(b);

unlock(a);
return;
}
. . .
unlock(a);
return;
}

Stack Based
Diff Function
bar(x) {
lock(x);
}

foo(a) {
bar(a);
if (. . .) {
unlock(a);
return;
}
. . .
unlock(a);
return;
}

Unstructured

foo(a, b) {
lock(a);

lock(b);
. . .

unlock(a);

unlock(b);
}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 11 / 26

Locking Patterns
Block
Structured
foo(a, b) {
lock(a);

lock(b);
. . .

unlock(b);

unlock(a);
}

Stack Based
Same Function
foo(a) {
lock(a);
if (. . .) {
lock(b);

unlock(b);

unlock(a);
return;
}
. . .
unlock(a);
return;
}

Stack Based
Diff Function
bar(x) {
lock(x);
}

foo(a) {
bar(a);
if (. . .) {
unlock(a);
return;
}
. . .
unlock(a);
return;
}

Unstructured

foo(a, b) {
lock(a);

lock(b);
. . .

unlock(a);

unlock(b);
}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 11 / 26

How C/pthreads Programs use Locks?

Using a big codebase (∼ 100 big projects using C/pthreads),
we gathered statistics on locking patterns

Locking Pattern Frequency
Block Structured 36.67%

Stack-Based (same function) 32.22%
Stack-Based (diff function) 20.00%

Unstructured 11.11%
Total 100.00%

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 12 / 26

Our Approach

To support unstructured locking, we have to
I track the order of lock and unlock operations
I annotate lock operations with a “continuation effect”

foo(x, y, z) { lock[y+, x−, z+, z−, y−](x); x := x + 42;
lock[x−, z+, z−, y−](y); y := y + x;
unlock(x);
lock[z−, y−](z); z := z + y;
unlock(z);
unlock(y);
. . . }

bar() { . . . foo(a, a, b); . . . }

After substitution, the continuation effects are still valid!
Future locksets are then correctly calculated

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 13 / 26

Our Approach

To support unstructured locking, we have to
I track the order of lock and unlock operations
I annotate lock operations with a “continuation effect”

foo(x, y, z) {

lock[a+, a−, b+, b−, a−](a); a := a + 42;
lock[a−, b+, b−, a−](a); a := a + a;
unlock(a);
lock[b−, a−](b); b := b + a;
unlock(b);
unlock(a)

bar() { . . . foo(a, a, b); . . . }

After substitution, the continuation effects are still valid!
Future locksets are then correctly calculated

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 13 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = {

a

,

b

}

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset

I traverse the continuation effect until the matching
unlock operation (while there are more a+ than a−)

I add the locations being locked to the future lockset

lockset = {

a

,

b

}

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)

I add the locations being locked to the future lockset

lockset = {

a

,

b

}

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = {

a

,

b

}

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = {

a

,

b

}

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = { a

, b

}

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = { a

, b

}

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = { a, b }

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = { a, b }

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = { a, b }

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Lockset Calculation
Compute future lockset at run-time using lock annotations

Input: a+︸︷︷︸
lock operation

a+, a−, b+, b−, a−, . . .︸ ︷︷ ︸
continuation effect

I start with an empty future lockset
I traverse the continuation effect until the matching

unlock operation (while there are more a+ than a−)
I add the locations being locked to the future lockset

lockset = { a, b }

I but effects must not be intra-procedural !
I what happens if the matching unlock operation occurs

after the function returns?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 14 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack

z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack

z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack

z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack

z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack

z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack

z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack

z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = {

y

,

z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = { y

, z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = { y

, z

}

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = { y, z }

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = { y, z }

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Inter-procedural Effects

I Function applications are also annotated with a
“continuation effect”

I When a function is applied, the continuation effect is
pushed on a run-time stack

I Lockset calculation may examine the stack

void f () { g()[z+];

lock[](z); }

void g() { lock[y+, y−](x);

lock[y−](y);
unlock(y); }

m() { f ()[z−, x−]; unlock(z); unlock(x); }

Stack
z+

z−, x−

Lock/Continuation
x+ y+, y−

lockset = { y, z }

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 15 / 26

Conditional Expressions

if (e) then e1 else e2

I How can we type-check conditionals ?

I Consider:
lock(x);
if (condition) {

lock(y); . . . ; unlock(y); effect: y+, y−
} effect: empty
unlock(x);

I Conservative, require: effect(e1) = effect(e2)

I We require: overall(effect(e1)) = overall(effect(e2))

I See TLDI’11 paper for treatment of loops/recursion

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 16 / 26

Conditional Expressions

if (e) then e1 else e2

I How can we type-check conditionals ?
I Consider:

lock(x);
if (condition) {

lock(y); . . . ; unlock(y); effect: y+, y−
} effect: empty
unlock(x);

I Conservative, require: effect(e1) = effect(e2)

I We require: overall(effect(e1)) = overall(effect(e2))

I See TLDI’11 paper for treatment of loops/recursion

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 16 / 26

Conditional Expressions

if (e) then e1 else e2

I How can we type-check conditionals ?
I Consider:

lock(x);
if (condition) {

lock(y); . . . ; unlock(y); effect: y+, y−
} effect: empty
unlock(x);

I Conservative, require: effect(e1) = effect(e2)

I We require: overall(effect(e1)) = overall(effect(e2))

I See TLDI’11 paper for treatment of loops/recursion

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 16 / 26

Conditional Expressions

if (e) then e1 else e2

I How can we type-check conditionals ?
I Consider:

lock(x);
if (condition) {

lock(y); . . . ; unlock(y); effect: y+, y−
} effect: empty
unlock(x);

I Conservative, require: effect(e1) = effect(e2)

I We require: overall(effect(e1)) = overall(effect(e2))

I See TLDI’11 paper for treatment of loops/recursion

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 16 / 26

Conditional Expressions

if (e) then e1 else e2

I How can we type-check conditionals ?
I Consider:

lock(x);
if (condition) {

lock(y); . . . ; unlock(y); effect: y+, y−
} effect: empty
unlock(x);

I Conservative, require: effect(e1) = effect(e2)

I We require: overall(effect(e1)) = overall(effect(e2))

I See TLDI’11 paper for treatment of loops/recursion

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 16 / 26

A Tool for C/pthreads

I Input: C program annotation free

I At compile time
I perform a field-sensitive, context-sensitive pointer analysis
I infer annotations/effects
I instrument code with continuation effects

I Link program with a run-time system
I overrides pthread library
I utilizes the effects in the code to

I compute future locksets
I grant locks in a way that avoids deadlocks

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 17 / 26

A Tool for C/pthreads

I Input: C program annotation free

I At compile time
I perform a field-sensitive, context-sensitive pointer analysis
I infer annotations/effects

I instrument code with continuation effects

I Link program with a run-time system
I overrides pthread library
I utilizes the effects in the code to

I compute future locksets
I grant locks in a way that avoids deadlocks

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 17 / 26

A Tool for C/pthreads

I Input: C program annotation free

I At compile time
I perform a field-sensitive, context-sensitive pointer analysis
I infer annotations/effects
I instrument code with continuation effects

I Link program with a run-time system
I overrides pthread library
I utilizes the effects in the code to

I compute future locksets
I grant locks in a way that avoids deadlocks

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 17 / 26

A Tool for C/pthreads

I Input: C program annotation free

I At compile time
I perform a field-sensitive, context-sensitive pointer analysis
I infer annotations/effects
I instrument code with continuation effects

I Link program with a run-time system
I overrides pthread library

I utilizes the effects in the code to
I compute future locksets
I grant locks in a way that avoids deadlocks

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 17 / 26

A Tool for C/pthreads

I Input: C program annotation free

I At compile time
I perform a field-sensitive, context-sensitive pointer analysis
I infer annotations/effects
I instrument code with continuation effects

I Link program with a run-time system
I overrides pthread library
I utilizes the effects in the code to

I compute future locksets
I grant locks in a way that avoids deadlocks

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 17 / 26

Static Analysis: Inference

I Call-graph: bottom-up traversal

I Loops:
I may have any number of lock/unlock operations
I lock counts upon loop exit must equal counts before the

loop entry
I Indirect calls: effect((∗ f)(x)):

I pointer analysis f 7→ {c1, . . . , cn}
I effect((∗ f)(x)) = effect(c1(x)) ? . . . ? effect(cn(x))

I Pointer analysis for lock handle pointers

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 18 / 26

Static Analysis: Inference

I Call-graph: bottom-up traversal
I Loops:

I may have any number of lock/unlock operations
I lock counts upon loop exit must equal counts before the

loop entry

I Indirect calls: effect((∗ f)(x)):
I pointer analysis f 7→ {c1, . . . , cn}
I effect((∗ f)(x)) = effect(c1(x)) ? . . . ? effect(cn(x))

I Pointer analysis for lock handle pointers

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 18 / 26

Static Analysis: Inference

I Call-graph: bottom-up traversal
I Loops:

I may have any number of lock/unlock operations
I lock counts upon loop exit must equal counts before the

loop entry
I Indirect calls: effect((∗ f)(x)):

I pointer analysis f 7→ {c1, . . . , cn}
I effect((∗ f)(x)) = effect(c1(x)) ? . . . ? effect(cn(x))

I Pointer analysis for lock handle pointers

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 18 / 26

Static Analysis: Inference

I Call-graph: bottom-up traversal
I Loops:

I may have any number of lock/unlock operations
I lock counts upon loop exit must equal counts before the

loop entry
I Indirect calls: effect((∗ f)(x)):

I pointer analysis f 7→ {c1, . . . , cn}

I effect((∗ f)(x)) = effect(c1(x)) ? . . . ? effect(cn(x))
I Pointer analysis for lock handle pointers

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 18 / 26

Static Analysis: Inference

I Call-graph: bottom-up traversal
I Loops:

I may have any number of lock/unlock operations
I lock counts upon loop exit must equal counts before the

loop entry
I Indirect calls: effect((∗ f)(x)):

I pointer analysis f 7→ {c1, . . . , cn}
I effect((∗ f)(x)) = effect(c1(x)) ? . . . ? effect(cn(x))

I Pointer analysis for lock handle pointers

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 18 / 26

Static Analysis: Status and Limitations

Support for:
I pointers to global lock handles
I dynamically allocated lock handles (heap + stack)

Requires no programmer-supplied annotations of any sort

No support for:
I non C code
I non-local jumps
I pointer arithmetic on pointers containing or pointing to

locks

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 19 / 26

Static Analysis: Status and Limitations

Support for:
I pointers to global lock handles
I dynamically allocated lock handles (heap + stack)

Requires no programmer-supplied annotations of any sort

No support for:
I non C code
I non-local jumps
I pointer arithmetic on pointers containing or pointing to

locks

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 19 / 26

Locking Algorithm

Upon a lock(x) with future lockset L:
1. Check whether all locks in L are available
2. If not, wait
3. Otherwise, tentatively acquire lock x
4. Check again L: if any lock in L is unavailable

I release x
I wait on that unavailable lock

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 20 / 26

Evaluation: On bigger C programs

benchmark run in user system elapsed ratio

curlftpfs
C 0.002 0.758 33.450

0.982
C+da 0.000 0.680 32.862

flam3
C 63.660 3.910 49.050

1.003
C+da 67.860 3.640 49.200

migrate-n
C 5545.311 4631.341 4138.070

1.118
C+da 5334.921 5020.346 4625.670

ngorca
C 124.846 0.126 8.270

0.996
C+da 124.467 0.126 8.240

sshfs-fuse
C 0.000 0.890 20.880

1.000
C+da 0.000 0.950 20.880

tgrep
C 13.238 11.639 5.190

1.191
C+da 14.801 11.655 6.180

Performance of C vs. C+da (C plus deadlock avoidance)

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 21 / 26

Evaluation: Cosmic Fractal Frames

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 22 / 26

Evaluation: File System over SSH

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 23 / 26

Evaluation: Dining Philosophers

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 24 / 26

Concluding Remarks

I A method that guarantees deadlock freedom
I without imposing a global lock acquisition order
I unstructured locking primitives

I A tool for C/pthreads
I completely automatic: no annotations are needed
I modest run-time overhead for instrumented programs

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 25 / 26

Thank you!

Questions?

P. Gerakios, N. Papaspyrou, K. Sagonas, P. Vekris Dynamic Deadlock Avoidance in Low-level Languages 26 / 26

	Introduction
	Basic Idea
	Our Approach
	Implementation
	Evaluation
	Conclusion

