
Takeaways of Implementing a Native Rust UDP
Tunneling Network Driver in the Linux Kernel

Amélie Gonzalez, Djob Mvondo, Yérom-David Bromberg

University of Rennes — IRISA — Inria — CNRS
Brittany, France

Workshop on Programming Language and Operating Systems (PLOS’23)
October 23rd 2023

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 1 / 14



Context & Questions

Context: The Linux Network Stack

In Linux, network handling/the stack is located in the net subsystem.

We know there are other faster means of networking [1]
Written in C, doing its best to be fast AND memory safe
Drivers still cause most errors bugs [2,3]
A memory error in the data path can have catastrophic consequences
Slow code in the data path can also have catastrophic consequences

Networking =⇒ processing data extremely fast and without any faults

1Høiland-Jørgensen et al., “The EXpress Data Path: Fast Programmable Packet Processing
in the Operating System Kernel” (CoNEXT ’18)

2Chou et al., “An Empirical Study of Operating Systems Errors” (SOSP ’01)
3Palix et al., “Faults in Linux: Ten Years Later” (ASPLOS XVI)

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 2 / 14



Context & Questions

Context: Rust for Linux

Rust:
Strong memory safety verifications at compile time
Flagship AOT compiler (rustc) based on LLVM
Great efforts to interface with C/C++, notably with bindgen1

Advertises zero-cost abstractions

The Rust for Linux (RFL) project:
Officially started around 2020
Great efforts to build a Rust ecosystem in the kernel
Still very early in the experimental phase

So why not do networking in Rust?

1See rust-lang/rust-bindgen on GitHub
Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 3 / 14

rust-lang/rust-bindgen


Context & Questions

Leading Questions

In order to study the impact of Rust, we focused on the network stack
(adjacent to some of our other work)

Is there a latency impact? How significant?
Is there a throughput impact? How significant?

Previously other supports have been studied, like NVMe support[4]
Contribution: an evaluation of a Rust network driver VS a driver that
performs the exact same function in C, with an unmodified build system of
Rust for Linux

Other contribution: discussions within the RFL project about how we should
handle abstraction development

4Hindborg, Linux Rust NVMe Driver Status Update (Linux Plumbers Conference ’22)
Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 4 / 14



Design & Approach

The General Design Plan

C kernel code remains unchanged
Bindings to methods are created
by bindgen
C code is not verified by rustc,
so C calls are unsafe
Rust code wraps unsafe code in
safe data structures
Drivers build atop the safe
abstractions, and as little unsafe
code as possible

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 5 / 14



Design & Approach

A Challenging Task

I will present three challenges we faced while developing the driver

They involve the driver code as much as the abstractions

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 6 / 14



Design & Approach

Challenge 1: Idiomatic yet familiar
Old habits die hard, memory bugs (hopefully) die harder

At the same time:
Our Rust code needs to remain idiomatic
Our Rust code should act similarly to the C code it’s interfacing with

module_init
module_exit

...

 7→trait kernel::module::Module

C function descriptors 7→Rust traits
C constants 7→Rust constants or enums

(const)? struct my_c_type* 7→&’a (mut)? MyRustType

Takeaway: Stratagems

8General stratagems for creating abstractions (but those are not rigid rules)

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 7 / 14



Design & Approach

Challenge 2: Oddities of Net & C Kernel Programming

The network stack API is designed to be used in C:
Descriptors of function pointers
(Checked) direct access to areas of memory
Typecasts of memory areas at the discretion of the drivers

Those are hard to transfer to a memory-safe language

Regarding the network device’s private data area:
First solution: unsafe methods, cast the private data area to a Sized type
Next idea: associated Types in Traits + strong use of typing in drivers

Takeaway: Problem-Solving Approaches

13

Many approaches to wrap unsafe outside of inner-unsafe:
sometimes granting drivers unsafe is simpler
Crafting typing rules may not be that easy

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 8 / 14



Design & Approach

Challenge 3: Socket Buffers
Socket buffers have a complex API. . .

struct sk_buff ≡ packet(s) + metadata

Packets have to be handled in the data path, dropped, and data inspected.

Dirty method: drop through a &’a mut, then return

Requirements:
1 Ownership of the abstraction (SkBuff ↔ struct sk_buff*)

Combined with a custom Drop, and a field that stores the skb drop reason
2 Safe wrappers to return regions of the buffer as &[u8]
3 Safe wrappers to force-cast buffer data to headers
4 All trimming/pushing/setting/getting functions in the abstraction

Takeaway: Typing is here to help

18

Use Rust’s type system to your advantage, stray away from stratagems when it’s
more convenient

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 9 / 14



Design & Approach

In the end

WgRS/RustyPipe:
Structure based on wireguard
Point-to-Point UDP Tunneling
No cryptography
NAPI-enabled
Managed with ip(8)
Peers hard-coded

a C version doing the same thing:
based on wireguard
Point-to-Point UDP Tunneling
No cryptography
NAPI-enabled
Managed with ip(8)
Peers hard-coded

Both drivers follow the same steps, use the same API
Only one of them uses FFI, wrappers and Rust’s core code

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 10 / 14



Evaluation & Results

Evaluation Setup

Run latency + throughput benchmark between two machines with a
Rust-enabled kernel and our tunnel modules deployed
Tool: netperf, TCP_RR and TCP_STREAM tests
Setup: Intel NUCs, model NUC7i7BNH, 4-core Intel Core i7–7567U CPUs
1 Gbps duplex link on a Cysco Catalyst 2960-S switch
It was our best bare-metal setup available
One run = 60 seconds of run + 10 seconds of cooldown
4000 runs for baseline, C and Rust (12000 runs total)

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 11 / 14



Evaluation & Results

Results

Latency: p = 1.464e−15
Interface Mean Min Max σ Points outside

95% interval
Baseline 122.2 117 127 1.10 176

C 126.8 120 132 1.37 273
Rust 127.1 121 134 1.34 176

Throughput: p = 6.004e−5
Interface Mean Min Max σ

Baseline 934.30 930.95 934.39 7.97e−2
C 915.79 913.92 915.93 8.15e−2

Rust 915.78 911.89 915.92 1.03e−1

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 12 / 14



Conclusions

What we learned

On unmodified RFL as of July 2023 with no build optimization:
1 There is a measurable impact on throughput and latency
2 Making a Rust network driver is daunting but very much doable
3 A non-trivial amount of work is necessary ahead of driver development to

even make it possible
4 Once our abstractions were deemed (but not proven) sound, we never

encountered memory errors

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 13 / 14



Conclusions

Going Forward

1 Improvements to the driver
2 Digging into precise reasons for the performance loss, notably the lack of LTO

LTO was important in the NVMe driver experiment[4]
3 Working on improving abstractions for more sound foundations

4Hindborg, Linux Rust NVMe Driver Status Update (Linux Plumbers Conference ’22)
Gonzalez, Mvondo, Bromberg Linux Rust Network Driver 2023–10–23 14 / 14


	Context & Questions
	Design & Approach
	Evaluation & Results
	Conclusions

