Takeaways of Implementing a Native Rust UDP
Tunneling Network Driver in the Linux Kernel

Amélie Gonzalez, Djob Mvondo, Yérom-David Bromberg

University of Rennes — IRISA — Inria — CNRS
Brittany, France

Workshop on Programming Language and Operating Systems (PLOS'23)
October 23™ 2023

) . s '
DX © IRISA Lot @

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Context & Questions

In Linux, network handling/the stack is located in the net subsystem.

We know there are other faster means of networking [1]
Written in C, doing its best to be fast AND memory safe
Drivers still cause most errors bugs [2,3]

A memory error in the data path can have catastrophic consequences

e 6 66 o o

Slow code in the data path can also have catastrophic consequences

Networking — processing data extremely fast and without any faults

IHgiland-Jgrgensen et al., “The EXpress Data Path: Fast Programmable Packet Processing
in the Operating System Kernel” (CoNEXT '18)

2Chou et al., “An Empirical Study of Operating Systems Errors” (SOSP '01)

3Palix et al., “Faults in Linux: Ten Years Later” (ASPLOS XVI)

Context & Questions

Rust:
@ Strong memory safety verifications at compile time
o Flagship AOT compiler (rustc) based on LLVM
o Great efforts to interface with C/C++, notably with bindgen1

o Advertises zero-cost abstractions

The Rust for Linux (RFL) project:
o Officially started around 2020
o Great efforts to build a Rust ecosystem in the kernel

o Still very early in the experimental phase

So why not do networking in Rust?

!See rust-lang/rust-bindgen on GitHub

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

rust-lang/rust-bindgen

Context & Questions

@ In order to study the impact of Rust, we focused on the network stack
(adjacent to some of our other work)
o Is there a latency impact? How significant?
o Is there a throughput impact? How significant?
Previously other supports have been studied, like NVMe support[4]

o Contribution: an evaluation of a Rust network driver VS a driver that
performs the exact same function in C, with an unmodified build system of
Rust for Linux

Other contribution: discussions within the RFL project about how we should
handle abstraction development

“Hindborg, Linux Rust NVMe Driver Status Update (Linux Plumbers Conference '22)

Design & Approach

C kernel code remains unchanged

(4]

Drivers K= Abstractions

3 gy OtierSubmysiem @ Bindings to methods are created
| b | by bindgen
A S on ayet g B . o C code is not verified by rustc,

so C calls are unsafe

Kernel Rust Abstractions
(Structures, traits, enums, constants)

|

I

I

! @ Rust code wraps unsafe code in
safe data structures

o Drivers build atop the safe
abstractions, and as little unsafe
code as possible

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Design & Approach

| will present three challenges we faced while developing the driver

They involve the driver code as much as the abstractions

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Design & Approach

At the same time:
@ Our Rust code needs to remain idiomatic
@ Our Rust code should act similarly to the C code it's interfacing with

module_init

module_exit —trait kernel::module: :Module

C function descriptors —Rust traits
C constants —Rust constants or enums

(const)? struct my_c_typex —&’a (mut)? MyRustType

General stratagems for creating abstractions (but those are not rigid rules)

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Design & Approach

The network stack API is designed to be used in C:
@ Descriptors of function pointers
o (Checked) direct access to areas of memory
@ Typecasts of memory areas at the discretion of the drivers

Those are hard to transfer to a memory-safe language

Regarding the network device's private data area:
o First solution: unsafe methods, cast the private data area to a Sized type

o Next idea: associated Types in Traits 4+ strong use of typing in drivers

Many approaches to wrap unsafe outside of inner-unsafe:

@ sometimes granting drivers unsafe is simpler

o Crafting typing rules may not be that easy

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Design & Approach

struct sk_buff = packet(s) + metadata

Packets have to be handled in the data path, dropped, and data inspected.

Requirements:

@ Ownership of the abstraction (SkBuff <+ struct sk_buffx)
Combined with a custom Drop, and a field that stores the skb drop reason

@ Safe wrappers to return regions of the buffer as & [u8]
@ Safe wrappers to force-cast buffer data to headers
@ All trimming/pushing/setting/getting functions in the abstraction

Use Rust’s type system to your advantage, stray away from stratagems when it's
more convenient

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Design & Approach

WgRS /RustyPipe: a C version doing the same thing:
@ Structure based on wireguard o based on wireguard
@ Point-to-Point UDP Tunneling @ Point-to-Point UDP Tunneling
@ No cryptography o No cryptography
o NAPI-enabled o NAPI-enabled
@ Managed with ip(8) o Managed with ip(8)
@ Peers hard-coded @ Peers hard-coded

Both drivers follow the same steps, use the same API
Only one of them uses FFI, wrappers and Rust's core code

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Evaluation & Results

@ Run latency + throughput benchmark between two machines with a
Rust-enabled kernel and our tunnel modules deployed

Tool: netperf, TCP_RR and TCP_STREAM tests

Setup: Intel NUCs, model NUC7i7BNH, 4-core Intel Core i7-7567U CPUs
1 Gbps duplex link on a Cysco Catalyst 2960-S switch
It was our best bare-metal setup available

(]

(4]

@ One run = 60 seconds of run + 10 seconds of cooldown
4000 runs for baseline, C and Rust (12000 runs total)

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Evaluation & Results

Latency: p = 1.464e—15

Interface Mean Min Max o Points outside
95% interval

Baseline 1222 117 127 1.10 176
C 126.8 120 132 1.37 273
Rust 127.1 121 134 1.34 176

Throughput: p = 6.004e—5
Interface Mean Min Max o
Baseline 934.30 930.95 934.39 7.97e—2
C 915.79 91392 91593 8.15e—2
Rust 915.78 911.89 91592 1.03e—1

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Conclusions

On unmodified RFL as of July 2023 with no build optimization:
@ There is a measurable impact on throughput and latency
@ Making a Rust network driver is daunting but very much doable

@ A non-trivial amount of work is necessary ahead of driver development to
even make it possible

@ Once our abstractions were deemed (but not proven) sound, we never
encountered memory errors

Gonzalez, Mvondo, Bromberg Linux Rust Network Driver

Conclusions

@ Improvements to the driver

@ Digging into precise reasons for the performance loss, notably the lack of LTO
LTO was important in the NVMe driver experiment[4]

© Working on improving abstractions for more sound foundations

“Hindborg, Linux Rust NVMe Driver Status Update (Linux Plumbers Conference '22)

	Context & Questions
	Design & Approach
	Evaluation & Results
	Conclusions

