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Section 1

Introduction
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What is Pancake?

Pancake is a new language for low-level
systems programming, aiming to promote the
ease of formal verification.
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Section 2

Background
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Why do we need Pancake?
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Why not use C?

C is the defacto systems programming language, so
why not verify C code?

▶ C has many undesirable properties for verification.
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Why not use C?

C is the defacto systems programming language, so
why not verify C code?

▶ C has many undesirable properties for verification.

▶ The seL4 verification effort demonstrated it was possible.

10,000 SLOC $350 Per SLOC 22 Person Years
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Why not type safety?

Why not take advantage of type safety? Why not a
language such as Rust?

▶ The addition of these advanced language features increase the
complexity of the language.
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Why not type safety?

Why not take advantage of type safety? Why not a
language such as Rust?

▶ It falls short of ensuring full functional correctness:

▶ Use of unsafe.

▶ Unverified compiler.

▶ Unverified run-time.

▶ No formal semantics.
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What do we aim to achieve?

Enter Pancake!

▶ Minimal design that still remains sufficiently expressive for
writing systems code.

▶ We don’t strictly want a safer language,

▶ But rather a language that is less complicated and more
ammenable to verification.
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Section 3

Design
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Pancake Overview

Pancake is a new ”C-like” systems programming language.

▶ It is an unmanaged language.

▶ Simple type system.

▶ No stack inspection.

▶ Statically allocated heap.

▶ No concurrency primitives.
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Compiler

The Pancake compiler is
formally verified from end
to end!

 

Remove deadcode

Simplify program

Select target instructions
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Turn stack accesses into
memory acceses
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language with
machine words,

memory and
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language 
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stack and
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assembly lang.
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Introduce C-style fast
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Remove deadcode
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Perform closure conv.

Inline small functions

Fold constants /shrink
Lets

Split over-sized functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Combine adjacent
memory allocations

Remove data abstraction 

Reduce caller-saved vars

Turn pattern matches into
if-then-else decision trees

Make some functions 
tail-recursive

Global dead code elim. 
 

CakeML passes
 

Transformations
 

Languages

Flatten structs

Normalise program

Call optimisation

Pancake AST

Pancake syntax
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language

without structs

LoopLang:
expressions
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with tail calls

Shrink cutsets and 
delete unused 
assignments 
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Type System

Pancake has a very simple type system, with only 3 kinds of data:

▶ Machine Words

▶ Labels

▶ Structs
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Foreign Function Interface (FFI)

Pancake offers a Foreign Function Interface, that allows Pancake
code to interact with the outside world.

#ffihello_world(a, alen, b, blen);

// Calling a C function named "hello_world"
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// Calling a C function named "hello_world"
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char *b, unsigned int blen)

{
printf("Hello World");

}
// The C function that we are calling
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Pancake’s Memory

We can intialize stack allocated local variables using the following
syntax:

var foo = 1; // Initializing a variable "foo"
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Pancake’s Memory

We can also store and load bytes, or words, from the heap:

var heap_addr = @base;

// "@base" denotes the base of the heap

strb heap_addr, 1;

// Storing the literal "1" onto the heap at heap_addr

var foo = ldb heap_addr;

// Loading the value at heap_addr into foo
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Example Pancake Code

while true {
#tx_fifo_busy(tmp_c_uart, tmp_clen_uart,

tmp_a_uart, tmp_alen_uart);

tx_fifo_ret = ldb tmp_a_uart;

if tx_fifo_ret <> 1 {
strb c_arr_uart, tmp;

#putchar_regs(c_arr_uart, clen_uart,

a_arr_uart, alen_uart);

break;

}
}
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Section 4

Case Study
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So how have we used Pancake?

We have implemented the following Pancake components on the
seL4 Device Driver Framework (sDDF):

▶ Serial Driver for the
Freescale i.MX 8M Mini
quad SoC.

▶ Serial Driver multiplexer.

▶ Ethernet Multiplexer for an
Ethernet Driver written in C.
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Related Posters

For more information on the
sDDF please see:

”Secure, High-Performance I/O”
by Lucy Parker

For more information on
MicroKit please see:

”Verifying seL4 MicroKit” by
Mathieu Paturel
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How do we use Pancake?

▶ Set up Pancake’s memory
regions.

▶ Initialise system.

▶ Jump into Pancake.

▶ Handle FFI calls.

▶ This is our Pancake code.

▶ The Pancake compiler will
output an assembly file.
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Serial Driver and Multiplexer
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Ethernet Multiplexer
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Issues we encountered

Due to Pancake currently being in the early stages of development,
there were a few hurdles to overcome:

▶ Shared memory support.

▶ Memory management.

▶ Pancake entry points.

▶ Exiting Pancake.
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Comparison against native C
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Comparison against Linux
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Section 5

Future Work
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Future Work

Current Work:

▶ Shared Memory Semantics.

▶ Interaction Tree Semantics.

▶ Verification of Pancake
progams.

Future Work:

▶ Decompilation into logic.
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Section 6

Q&A
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