
Pancake: Verified Systems Programming Made
Sweeter

Johannes Åman Pohjola 1 Hira Taqdees Syeda 2 Miki
Tanaka 1 Krishnan Winter 1 Tsun Wang Sau 1

Benjamin Nott 1 Tiana Tsang Ung 1 Craig McLaughlin 1

Remy Seassau 1 Magnus O. Myreen 2 Michael Norrish 3

Gernot Heiser 1

1UNSW Sydney

2Chalmers University of Technology 3Australian National University

PLOS ’23

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 1 / 30

Outline

Introduction

Background

Design

Case Study

Future Work

Q&A

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 2 / 30

Section 1

Introduction

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 3 / 30

What is Pancake?

Pancake is a new language for low-level
systems programming, aiming to promote the
ease of formal verification.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 4 / 30

Section 2

Background

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 5 / 30

Why do we need Pancake?

17
28
16
87

17
89
53
2

11
68
78
4

10
55
44
0

91
97
21

87
64
78

76
24
15

29
92
38

17
67
23

11
91
30

91
35
9

72
70
1

67
12
8

42
16
0

27
10
4

13
73
5

68
22

65
57

48
85

30
40

93
9

73
8

12
9

D
RI
VE
RS

AR
CH

SO
UN
D FS

N
ET

TO
O
LS

IN
CL
UD
E

KE
RN
EL LI

B
M
M

CR
YP
TO

SE
CU
RI
TY

SC
RI
PT
S

BL
O
CK

SA
M
PL
ES

IO
_U
RI
N
G
IP
C
VI
RT

D
O
CU
M
EN
TA
TI
O
N
IN
IT
US
R

CE
RT
S

RU
ST

LINUX SLOC
SLOC

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 6 / 30

Why not use C?

C is the defacto systems programming language, so
why not verify C code?

▶ C has many undesirable properties for verification.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 7 / 30

Why not use C?

C is the defacto systems programming language, so
why not verify C code?

▶ C has many undesirable properties for verification.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 7 / 30

Why not use C?

C is the defacto systems programming language, so
why not verify C code?

▶ C has many undesirable properties for verification.

▶ The seL4 verification effort demonstrated it was possible.

10,000 SLOC $350 Per SLOC 22 Person Years

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 7 / 30

Why not type safety?

Why not take advantage of type safety? Why not a
language such as Rust?

▶ The addition of these advanced language features increase the
complexity of the language.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 8 / 30

Why not type safety?

Why not take advantage of type safety? Why not a
language such as Rust?

▶ It falls short of ensuring full functional correctness:

▶ Use of unsafe.

▶ Unverified compiler.

▶ Unverified run-time.

▶ No formal semantics.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 9 / 30

What do we aim to achieve?

Enter Pancake!

▶ Minimal design that still remains sufficiently expressive for
writing systems code.

▶ We don’t strictly want a safer language,

▶ But rather a language that is less complicated and more
ammenable to verification.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 10 / 30

Section 3

Design

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 11 / 30

Pancake Overview

Pancake is a new ”C-like” systems programming language.

▶ It is an unmanaged language.

▶ Simple type system.

▶ No stack inspection.

▶ Statically allocated heap.

▶ No concurrency primitives.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 12 / 30

Pancake Overview

Pancake is a new ”C-like” systems programming language.

▶ It is an unmanaged language.

▶ Simple type system.

▶ No stack inspection.

▶ Statically allocated heap.

▶ No concurrency primitives.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 12 / 30

Compiler

The Pancake compiler is
formally verified from end
to end!

Remove deadcode

Simplify program

Select target instructions

Perform SSA-like renaming

Force two-reg code (if req.)

Allocate register names

Concretise stack

Implement GC primitive

Turn stack accesses into
memory acceses

Rename registers to match
arch registers/conventions

Flatten code

Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

WordLang:
imperative

language with
machine words,

memory and
a GC primitive

StackLang:
imperative
language

with array-like
stack and

optional GC

LabLang:
assembly lang.

ARMv6

ARMv8 x86-64 MIPS-64 RISC-V

Parse concrete
syntax

Silver ISA

Introduce (raw) calls past
function preambles

Pancake passes

Transformations

Languages

CakeML syntax

CakeML AST

ClosLang:
last language
with closures
(has multi-arg

closures)

BVL:
functional
language

without
closures

DataLang:
imperative
language

BVI:
one global

variable

FlatLang:
language

without
high-level
features

Parse concrete syntax

Infer types, exit if fail

Introduce globals vars,
eliminate modules, etc.

Switch to de Bruijn
indexed local variables

Track closure values &
inline small funct

Fuse function calls
into multi-arg calls

Introduce C-style fast
calls where possible

Remove deadcode

Annotate closure creations

Perform closure conv.

Inline small functions

Fold constants /shrink
Lets

Split over-sized functions

Compile global vars into a
dynamically resized array

Optimise Let-expressions

Switch to imperative style

Combine adjacent
memory allocations

Remove data abstraction

Reduce caller-saved vars

Turn pattern matches into
if-then-else decision trees

Make some functions
tail-recursive

Global dead code elim.

CakeML passes

Transformations

Languages

Flatten structs

Normalise program

Call optimisation

Pancake AST

Pancake syntax

CrepLang:
imperative
language

without structs

LoopLang:
expressions

occur only on
RHS of

assignment
statementsReplace loops

with tail calls

Shrink cutsets and
delete unused
assignments

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 13 / 30

Type System

Pancake has a very simple type system, with only 3 kinds of data:

▶ Machine Words

▶ Labels

▶ Structs

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 14 / 30

Foreign Function Interface (FFI)

Pancake offers a Foreign Function Interface, that allows Pancake
code to interact with the outside world.

#ffihello_world(a, alen, b, blen);

// Calling a C function named "hello_world"

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 15 / 30

Foreign Function Interface (FFI)

Pancake offers a Foreign Function Interface, that allows Pancake
code to interact with the outside world.

#ffihello_world(a, alen, b, blen);

// Calling a C function named "hello_world"

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 15 / 30

Foreign Function Interface (FFI)

Pancake offers a Foreign Function Interface, that allows Pancake
code to interact with the outside world.

#ffihello_world(a, alen, b, blen);

// Calling a C function named "hello_world"

void ffihello_world(char *a, unsigned int alen,

char *b, unsigned int blen)

{
printf("Hello World");

}
// The C function that we are calling

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 15 / 30

Foreign Function Interface (FFI)

Pancake offers a Foreign Function Interface, that allows Pancake
code to interact with the outside world.

#ffihello_world(a, alen, b, blen);

// Calling a C function named "hello_world"

void ffihello_world(char *a, unsigned int alen,

char *b, unsigned int blen)

{
printf("Hello World");

}
// The C function that we are calling

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 15 / 30

Pancake’s Memory

We can intialize stack allocated local variables using the following
syntax:

var foo = 1; // Initializing a variable "foo"

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 16 / 30

Pancake’s Memory

We can also store and load bytes, or words, from the heap:

var heap_addr = @base;

// "@base" denotes the base of the heap

strb heap_addr, 1;

// Storing the literal "1" onto the heap at heap_addr

var foo = ldb heap_addr;

// Loading the value at heap_addr into foo

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 17 / 30

Pancake’s Memory

We can also store and load bytes, or words, from the heap:

var heap_addr = @base;

// "@base" denotes the base of the heap

strb heap_addr, 1;

// Storing the literal "1" onto the heap at heap_addr

var foo = ldb heap_addr;

// Loading the value at heap_addr into foo

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 17 / 30

Pancake’s Memory

We can also store and load bytes, or words, from the heap:

var heap_addr = @base;

// "@base" denotes the base of the heap

strb heap_addr, 1;

// Storing the literal "1" onto the heap at heap_addr

var foo = ldb heap_addr;

// Loading the value at heap_addr into foo

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 17 / 30

Pancake’s Memory

We can also store and load bytes, or words, from the heap:

var heap_addr = @base;

// "@base" denotes the base of the heap

strb heap_addr, 1;

// Storing the literal "1" onto the heap at heap_addr

var foo = ldb heap_addr;

// Loading the value at heap_addr into foo

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 17 / 30

Example Pancake Code

while true {
#tx_fifo_busy(tmp_c_uart, tmp_clen_uart,

tmp_a_uart, tmp_alen_uart);

tx_fifo_ret = ldb tmp_a_uart;

if tx_fifo_ret <> 1 {
strb c_arr_uart, tmp;

#putchar_regs(c_arr_uart, clen_uart,

a_arr_uart, alen_uart);

break;

}
}

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 18 / 30

Section 4

Case Study

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 19 / 30

So how have we used Pancake?

We have implemented the following Pancake components on the
seL4 Device Driver Framework (sDDF):

▶ Serial Driver for the
Freescale i.MX 8M Mini
quad SoC.

▶ Serial Driver multiplexer.

▶ Ethernet Multiplexer for an
Ethernet Driver written in C.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 20 / 30

Related Posters

For more information on the
sDDF please see:

”Secure, High-Performance I/O”
by Lucy Parker

For more information on
MicroKit please see:

”Verifying seL4 MicroKit” by
Mathieu Paturel

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 21 / 30

How do we use Pancake?

▶ Set up Pancake’s memory
regions.

▶ Initialise system.

▶ Jump into Pancake.

▶ Handle FFI calls.

▶ This is our Pancake code.

▶ The Pancake compiler will
output an assembly file.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 22 / 30

How do we use Pancake?

▶ Set up Pancake’s memory
regions.

▶ Initialise system.

▶ Jump into Pancake.

▶ Handle FFI calls.

▶ This is our Pancake code.

▶ The Pancake compiler will
output an assembly file.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 22 / 30

How do we use Pancake?

▶ Set up Pancake’s memory
regions.

▶ Initialise system.

▶ Jump into Pancake.

▶ Handle FFI calls.

▶ This is our Pancake code.

▶ The Pancake compiler will
output an assembly file.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 22 / 30

How do we use Pancake?

▶ Set up Pancake’s memory
regions.

▶ Initialise system.

▶ Jump into Pancake.

▶ Handle FFI calls.

▶ This is our Pancake code.

▶ The Pancake compiler will
output an assembly file.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 22 / 30

How do we use Pancake?

▶ Set up Pancake’s memory
regions.

▶ Initialise system.

▶ Jump into Pancake.

▶ Handle FFI calls.

▶ This is our Pancake code.

▶ The Pancake compiler will
output an assembly file.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 22 / 30

How do we use Pancake?

▶ Set up Pancake’s memory
regions.

▶ Initialise system.

▶ Jump into Pancake.

▶ Handle FFI calls.

▶ This is our Pancake code.

▶ The Pancake compiler will
output an assembly file.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 22 / 30

Serial Driver and Multiplexer

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 23 / 30

Ethernet Multiplexer

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 24 / 30

Issues we encountered

Due to Pancake currently being in the early stages of development,
there were a few hurdles to overcome:

▶ Shared memory support.

▶ Memory management.

▶ Pancake entry points.

▶ Exiting Pancake.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 25 / 30

Comparison against native C

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00
0

0

100

200

300

400

500

600

700

800

900

1,000

Requested Throughput (Mb/s)

R
ec
ei
ve
d
T
h
ro
u
gh

p
u
t
(M

b
/s
)

0

10

20

30

40

50

60

70

80

90

100

C
P
U

U
ti
lis
at
io
n
(%

)

Xput Pancake
Xput C
CPU Pancake
CPU C

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 26 / 30

Comparison against Linux

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00
0

0

100

200

300

400

500

600

700

800

900

1,000

Requested Throughput (Mb/s)

R
ec
ei
ve
d
T
h
ro
u
gh

p
u
t
(M

b
/s
)

0

10

20

30

40

50

60

70

80

90

100

C
P
U

U
ti
lis
at
io
n
(%

)

Xput Pancake
Xput Linux
CPU Pancake
CPU Linux

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 27 / 30

Section 5

Future Work

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 28 / 30

Future Work

Current Work:

▶ Shared Memory Semantics.

▶ Interaction Tree Semantics.

▶ Verification of Pancake
progams.

Future Work:

▶ Decompilation into logic.

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 29 / 30

Section 6

Q&A

Krishnan Winter (UNSW Sydney) Pancake PLOS ’23 30 / 30

	Introduction
	Background

