
KLean: Extending Operating System 
Kernels with Lean

Di Jin1    Ethan Lavi1    Jinghao Jia2    Robert Y. Lewis1    Nikos Vasilakis1

1Brown University
2University of Illinois Urbana-Champaign

1



BPF: Linux's Safe Extension Language
Safe customizability without the cost of 
context switching or data movement

● Networking

● Profiling

● Security

● Storage

● Scheduling

BMC [NSDI’21] by Ghigoff et al.
XRP [OSDI’22] by Zhong et al.
ghOSt [SOSP’21] by Humphries et al.
... 2



BPF Review
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● Termination
● Type safety
● Memory safety
● ...



BPF's Vision
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"eBPF is a crazy technology – like putting JavaScript into the 
Linux kernel..." --- Brendan Gregg

"BPF programs are safe and portable kernel modules" --- Alexei 
Starovoitov

"Think of eBPF as a new type of software which bridges the gap 
between a typical monolithic kernel and microkernel..." --- Daniel 
Borkmann



Battling the Verifier

"I want to build a low-latency KV store. 
Let me use BPF for this."
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Battling the Verifier

"Wait...why is my 
perfect code rejected?"

6

48: (2d) if r3 > r2 goto pc+8         ; 
R2_w=pkt_end(off=0,imm=0) R3_w=pkt(off=34,r=34,imm=0)
; return (void *)(unsigned long)ctx->data_end;
49: (67) r2 <<= 32
R2 pointer arithmetic on pkt_end prohibited
processed 45 insns (limit 1000000) max_states_per_insn 1 
total_states 4 peak_states 4 mark_read 2
-- END PROG LOAD LOG --
libbpf: prog 'handle_ipv4_from_netdev': failed to load: -13
libbpf: failed to load object 
'/home/user/projects/cilium/cilium/bpf/tests/abpf.o'
Error: failed to load object file

Unintuitive error with 
obscure error message

if (ptr + 4*index < pkt_end)

if (index < (pkt_end - ptr)/4)



Battling the Verifier

"But my program has just 
400 instructions."
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; for (__u16 j = 0; j < MAX_SERVER_NAME_LENGTH; j++) {
76: (25) if r3 > 0xfb goto pc+3
77: (07) r3 += 1
78: (07) r4 += 8
79: (3d) if r1 >= r4 goto pc-15
65: (bf) r4 = r2
66: (0f) r4 += r3
67: (71) r5 = *(u8 *)(r4 +6)
BPF program is too large. Processed 1000001 insn
processed 1000001 insns (limit 1000000) max_states_per_insn 
34 total_states 10376 peak_states 7503 mark_read 3

Analysis can time out for small 
programs with complex control flow



Battling the Verifier

"Just need to submit a 
kernel patch for better 
analysis."
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Battling the Verifier

"Just need to fix this 
kernel vulnerability I 
created"
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Battling the Verifier

Usability problem: BPF programs are difficult to develop

● Code patterns can get rejected due to verifier's inaccuracy
○ Pointer arithmetics restricted for the accuracy of points-to analysis
○ Control-flow complexity restricted by analysis time limit
○ ...

Maintenance burden problem: the kernel is difficult to maintain

● Constant refinements for analysis accuracy
● Bugs caused by the frequent changes
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Rethink the Design of Safe Kernel Extensions

BPF's design demands a sound static analysis to be accurate, which is 
fundamentally hard.

Soundness: accepted extensions are safe

Accuracy: safe extensions are accepted (maximally)
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Decouple the obligations using a proof-carrying language

Soundness ⇔ safety specification & checking → Kernel: maintenance burden ⤵

Accuracy ⇔ safety proving → Userspace: usability ⤴



KLean: Proposed Design

We propose KLean: a safe kernel 
extension framework using Lean
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Userspace
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Core Lean code
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● In-kernel Lean environment
○ Type checker
○ Runtime

● Lean-kernel interface
○ Lean specification of kernel API 

exposed for extension

● Proof infrastructure
○ Domain-specific languages and 

proof tactics



KLean: Proposed Design
class KStateM (m : Type → Type) [Monad m] where
  get_random_n : m UInt32
  printk (s : String) : m Unit
  lock (l : Lock) : m Unit
  -- more defs

class XDPExt where
  prog (m : Type → Type) (p : Pkt) [KStateM m] : m Action
  prog_lock_correct : lockOrdered prog
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import KLean
def myext (m : Type → Type) (p : Pkt) [KStateM m] : m Action := do
  let x ← KStateM.get_random_n
  KStateM.printk s!"Hello {x}"
  return Action.Pass
theorem myprog_lock_correct := ...
def extMain : XDPExt := {
  prog := myprog
  prog_lock_correct := myprog_lock_correct
}

KLean.lean

MyExt.lean

Kernel-state-accessing 
API
Expected function 
signature

Expected proof for 
overall safety properties
Implementing 
executable function

Register KLean 
extension

Providing proof
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KLean's Kernel-side Benefits
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● Less maintenance burden
○ Lean type checker as verifier --- relatively minimal

○ Decidable and (mostly) efficient algorithm

○ Rare changes (except Lean-kernel interface)

● Better specification language --- CIC type system

○ Decouples specification from verification

○ Allows writing modular and reusable specifications

○ Allows specifying complex safety properties (e.g. locking order)



KLean's Userspace-side Benefits

● Better usability: more expressive and well-defined language

+ No unintuitive restrictions on code patterns

+ No control-flow complexity limit

− No automatic in-kernel safety proving
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↳ This is a plus (with some work) for KLean: 
we can still do automation in userspace

● Proof infrastructure --- implemented through meta-programming

○ Domain-specific languages and proof tactics

○ BPF-style full proof automation



LPF: a KLean-based BPF Alternative
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LPF: a KLean-based BPF Alternative

let c_module := C_PROG_START
void swap(int *a, int *b) {
    *a = *a + *b;
    *b = *a - *b;
    *a = *a - *b;
}
int main(void *ctx) {
    ...
    swap(&x, &y);
    z = ip[x];
    ...
}
C_PROG_DONE

let m := lpf_verify c_module
...
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C-like DSL

Lowering and 
proof generation

MyExt.lean
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let c_module := C_PROG_START
void swap(int *a, int *b) {
    *a = *a + *b;
    *b = *a - *b;
    *a = *a - *b;
}
int main(void *ctx) {
    ...
    swap(&x, &y);
    z = ip[x];
    ...
}
C_PROG_DONE

let m := lpf_verify c_module
...

LPF: a KLean-based BPF Alternative
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let c_module := C_PROG_START
void swap(int *a, int *b) {
    *a = *a + *b;
    *b = *a - *b;
    *a = *a - *b;
}
int main(void *ctx) {
    ...
    swap(&x, &y);
    z = ip[x];
    ...
}
C_PROG_DONE

theorem swap_range : ...
let m := lpf_verify c_module [swap_range]
...

LPF: a KLean-based BPF Alternative
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x: [0, 3] y: [0, 3]

*a: [0, 3] *b: [0, 3]
*a: [0, 6] *b: [0, 3]
*a: [0, 6] *b: [-3, 6]
*a: [-3, 9] *b: [-3, 6]

ip: size 4

MyExt.lean

x: [-6, 9] y: [-3, 6]
Invalid access

ip: size 4
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let c_module := C_PROG_START
void swap(int *a, int *b) {
    *a = *a + *b;
    *b = *a - *b;
    *a = *a - *b;
}
int main(void *ctx) {
    ...
    swap(&x, &y);
    z = ip[x];
    ...
}
C_PROG_DONE

theorem swap_range : ...
let m := lpf_verify c_module [swap_range]
...

LPF: a KLean-based BPF Alternative
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MyExt.lean

x: [0, 3] y: [0, 3] ip: size 4z: [0, 255]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17



Things We Skipped
Additional benefits

● Lean's Imperative-friendly IR and other optimization tricks
● Built-in verified data structure (e.g. hash table)

Other challenges

● Bounding time and space complexity
● Performance-TCB tradeoff

Potential applications

● Efficient system call virtualization

● Trustworthy user-implemented drivers

● Complete data path delegation 21



Summary

We propose KLean: a safe OS kernel extension framework using Lean, 
which includes

● In-kernel Lean environment for safety checking and program execution
● Lean-kernel interface for safety specification
● Proof infrastructure in user space for easier/automatic safety proving

and such design will

● improve usability by providing intuitive programming interface and helpful proof 
tactics

● reduce kernel maintenance burden by simplifying safety specification as well 
as safety verification 22



Find Us
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Challenges: Performance

Enemies

● Frequent memory allocation
● Costly abstraction mechanism
● TCB size restriction

Allies

● Lean's imperative-friendly IR and 
optimization

● Implementation shadowing
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Trustworthy

Runtime Performance

Lean core interpreter

Lean core interpreter +
native optimized extensions

Lean-to-C + CompCert

Lean-to-C + LLVM

Verified Lean 
compiler

JIT compilation



Simplifying Kernel-side Verification
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Subsystem LoC Bug fix/total 
commits

Ratio

mm 130k 2404/24522 9.8%

sched 35k 532/4671 11.4%

net/core 64k 1311/10051 13%

fs/ext4 47k 390/5354 7.3%

bpf 57k 910/3945 23.1%

Linux kernel bug fix commits by subsystem
(at version 6.16-rc6)

Core Lean type checker

● Decidable and efficient algorithm

● Multiple external implementations

○ e.g., 7.8k Rust LoC

● Much less maintenance burden 

--- Lean's core type system rarely 

changes


