
KLean: Extending Operating System
Kernels with Lean

Di Jin1 Ethan Lavi1 Jinghao Jia2 Robert Y. Lewis1 Nikos Vasilakis1

1Brown University
2University of Illinois Urbana-Champaign

1

BPF: Linux's Safe Extension Language
Safe customizability without the cost of
context switching or data movement

● Networking

● Profiling

● Security

● Storage

● Scheduling

BMC [NSDI’21] by Ghigoff et al.
XRP [OSDI’22] by Zhong et al.
ghOSt [SOSP’21] by Humphries et al.
... 2

BPF Review

3

Higher-level
language (C/Rust/...)

Static analysis
Abstract interpretation

BPF
Verifier

Execution
semantics

Type info

BPF
bytecode

User-written
extension

Userspace Kernel
High-level
invariants

BPF
bytecode

Type info

Verified
BPF program

Kernel
Code

&
State

● Termination
● Type safety
● Memory safety
● ...

BPF's Vision

4

"eBPF is a crazy technology – like putting JavaScript into the
Linux kernel..." --- Brendan Gregg

"BPF programs are safe and portable kernel modules" --- Alexei
Starovoitov

"Think of eBPF as a new type of software which bridges the gap
between a typical monolithic kernel and microkernel..." --- Daniel
Borkmann

Battling the Verifier

"I want to build a low-latency KV store.
Let me use BPF for this."

5

Battling the Verifier

"Wait...why is my
perfect code rejected?"

6

48: (2d) if r3 > r2 goto pc+8 ;
R2_w=pkt_end(off=0,imm=0) R3_w=pkt(off=34,r=34,imm=0)
; return (void *)(unsigned long)ctx->data_end;
49: (67) r2 <<= 32
R2 pointer arithmetic on pkt_end prohibited
processed 45 insns (limit 1000000) max_states_per_insn 1
total_states 4 peak_states 4 mark_read 2
-- END PROG LOAD LOG --
libbpf: prog 'handle_ipv4_from_netdev': failed to load: -13
libbpf: failed to load object
'/home/user/projects/cilium/cilium/bpf/tests/abpf.o'
Error: failed to load object file

Unintuitive error with
obscure error message

if (ptr + 4*index < pkt_end)

if (index < (pkt_end - ptr)/4)

Battling the Verifier

"But my program has just
400 instructions."

7

; for (__u16 j = 0; j < MAX_SERVER_NAME_LENGTH; j++) {
76: (25) if r3 > 0xfb goto pc+3
77: (07) r3 += 1
78: (07) r4 += 8
79: (3d) if r1 >= r4 goto pc-15
65: (bf) r4 = r2
66: (0f) r4 += r3
67: (71) r5 = *(u8 *)(r4 +6)
BPF program is too large. Processed 1000001 insn
processed 1000001 insns (limit 1000000) max_states_per_insn
34 total_states 10376 peak_states 7503 mark_read 3

Analysis can time out for small
programs with complex control flow

Battling the Verifier

"Just need to submit a
kernel patch for better
analysis."

8

Battling the Verifier

"Just need to fix this
kernel vulnerability I
created"

9

Battling the Verifier

Usability problem: BPF programs are difficult to develop

● Code patterns can get rejected due to verifier's inaccuracy
○ Pointer arithmetics restricted for the accuracy of points-to analysis
○ Control-flow complexity restricted by analysis time limit
○ ...

Maintenance burden problem: the kernel is difficult to maintain

● Constant refinements for analysis accuracy
● Bugs caused by the frequent changes

10

Rethink the Design of Safe Kernel Extensions

BPF's design demands a sound static analysis to be accurate, which is
fundamentally hard.

Soundness: accepted extensions are safe

Accuracy: safe extensions are accepted (maximally)

11

Decouple the obligations using a proof-carrying language

Soundness ⇔ safety specification & checking → Kernel: maintenance burden ⤵

Accuracy ⇔ safety proving → Userspace: usability ⤴

KLean: Proposed Design

We propose KLean: a safe kernel
extension framework using Lean

12

Userspace

Kernel

Core Lean code

Lean type
checker

Full Lean code

Simpler DSLs

Global state

Kernel data

Verified Lean
code

Lean-kernel
interface

Proof
infrastructure

Lean runtime

Lean
Elaborator

● In-kernel Lean environment
○ Type checker
○ Runtime

● Lean-kernel interface
○ Lean specification of kernel API

exposed for extension

● Proof infrastructure
○ Domain-specific languages and

proof tactics

KLean: Proposed Design
class KStateM (m : Type → Type) [Monad m] where
 get_random_n : m UInt32
 printk (s : String) : m Unit
 lock (l : Lock) : m Unit
 -- more defs

class XDPExt where
 prog (m : Type → Type) (p : Pkt) [KStateM m] : m Action
 prog_lock_correct : lockOrdered prog

13

import KLean
def myext (m : Type → Type) (p : Pkt) [KStateM m] : m Action := do
 let x ← KStateM.get_random_n
 KStateM.printk s!"Hello {x}"
 return Action.Pass
theorem myprog_lock_correct := ...
def extMain : XDPExt := {
 prog := myprog
 prog_lock_correct := myprog_lock_correct
}

KLean.lean

MyExt.lean

Kernel-state-accessing
API
Expected function
signature

Expected proof for
overall safety properties
Implementing
executable function

Register KLean
extension

Providing proof

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

10

KLean's Kernel-side Benefits

14

● Less maintenance burden
○ Lean type checker as verifier --- relatively minimal

○ Decidable and (mostly) efficient algorithm

○ Rare changes (except Lean-kernel interface)

● Better specification language --- CIC type system

○ Decouples specification from verification

○ Allows writing modular and reusable specifications

○ Allows specifying complex safety properties (e.g. locking order)

KLean's Userspace-side Benefits

● Better usability: more expressive and well-defined language

+ No unintuitive restrictions on code patterns

+ No control-flow complexity limit

− No automatic in-kernel safety proving

15

↳ This is a plus (with some work) for KLean:
we can still do automation in userspace

● Proof infrastructure --- implemented through meta-programming

○ Domain-specific languages and proof tactics

○ BPF-style full proof automation

LPF: a KLean-based BPF Alternative

16

LPF VerifierExecution
semantics

Type info

User-written
extension

Core Lean
expr

Core Lean
Program

Kernel
Code

&
State

Core Lean
type info

C-like DSL

Untouched KLean
infrastructureAbstract interpretation

Proof-producing analysis

White-box automation
Userspace Kernel

LPF: a KLean-based BPF Alternative

let c_module := C_PROG_START
void swap(int *a, int *b) {
 *a = *a + *b;
 *b = *a - *b;
 *a = *a - *b;
}
int main(void *ctx) {
 ...
 swap(&x, &y);
 z = ip[x];
 ...
}
C_PROG_DONE

let m := lpf_verify c_module
...

17

C-like DSL

Lowering and
proof generation

MyExt.lean
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

let c_module := C_PROG_START
void swap(int *a, int *b) {
 *a = *a + *b;
 *b = *a - *b;
 *a = *a - *b;
}
int main(void *ctx) {
 ...
 swap(&x, &y);
 z = ip[x];
 ...
}
C_PROG_DONE

let m := lpf_verify c_module
...

LPF: a KLean-based BPF Alternative

18

x: [0, 3] y: [0, 3]
x: [-6, 9] y: [-3, 6]

Invalid access
ip: size 4

*a: [0, 3] *b: [0, 3]
*a: [0, 6] *b: [0, 3]
*a: [0, 6] *b: [-3, 6]
*a: [-3, 9] *b: [-3, 6]

ip: size 4

MyExt.lean
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

let c_module := C_PROG_START
void swap(int *a, int *b) {
 *a = *a + *b;
 *b = *a - *b;
 *a = *a - *b;
}
int main(void *ctx) {
 ...
 swap(&x, &y);
 z = ip[x];
 ...
}
C_PROG_DONE

theorem swap_range : ...
let m := lpf_verify c_module [swap_range]
...

LPF: a KLean-based BPF Alternative

19

x: [0, 3] y: [0, 3]

*a: [0, 3] *b: [0, 3]
*a: [0, 6] *b: [0, 3]
*a: [0, 6] *b: [-3, 6]
*a: [-3, 9] *b: [-3, 6]

ip: size 4

MyExt.lean

x: [-6, 9] y: [-3, 6]
Invalid access

ip: size 4

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

let c_module := C_PROG_START
void swap(int *a, int *b) {
 *a = *a + *b;
 *b = *a - *b;
 *a = *a - *b;
}
int main(void *ctx) {
 ...
 swap(&x, &y);
 z = ip[x];
 ...
}
C_PROG_DONE

theorem swap_range : ...
let m := lpf_verify c_module [swap_range]
...

LPF: a KLean-based BPF Alternative

20

x: [0, 3] y: [0, 3]
x: [0, 3] y: [0, 3] ip: size 4

*a: [0, 3] *b: [0, 3]
*a: [0, 6] *b: [0, 3]
*a: [0, 6] *b: [-3, 6]
*a: [-3, 9] *b: [-3, 6]

ip: size 4

MyExt.lean

x: [0, 3] y: [0, 3] ip: size 4z: [0, 255]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Things We Skipped
Additional benefits

● Lean's Imperative-friendly IR and other optimization tricks
● Built-in verified data structure (e.g. hash table)

Other challenges

● Bounding time and space complexity
● Performance-TCB tradeoff

Potential applications

● Efficient system call virtualization

● Trustworthy user-implemented drivers

● Complete data path delegation 21

Summary

We propose KLean: a safe OS kernel extension framework using Lean,
which includes

● In-kernel Lean environment for safety checking and program execution
● Lean-kernel interface for safety specification
● Proof infrastructure in user space for easier/automatic safety proving

and such design will

● improve usability by providing intuitive programming interface and helpful proof
tactics

● reduce kernel maintenance burden by simplifying safety specification as well
as safety verification 22

Find Us

23

Di Jin Ethan Lavi Jinghao Jia Robert Y. Lewis Nikos Vasilakis

24

Backup slides

Challenges: Performance

Enemies

● Frequent memory allocation
● Costly abstraction mechanism
● TCB size restriction

Allies

● Lean's imperative-friendly IR and
optimization

● Implementation shadowing

25

Trustworthy

Runtime Performance

Lean core interpreter

Lean core interpreter +
native optimized extensions

Lean-to-C + CompCert

Lean-to-C + LLVM

Verified Lean
compiler

JIT compilation

Simplifying Kernel-side Verification

26

Subsystem LoC Bug fix/total
commits

Ratio

mm 130k 2404/24522 9.8%

sched 35k 532/4671 11.4%

net/core 64k 1311/10051 13%

fs/ext4 47k 390/5354 7.3%

bpf 57k 910/3945 23.1%

Linux kernel bug fix commits by subsystem
(at version 6.16-rc6)

Core Lean type checker

● Decidable and efficient algorithm

● Multiple external implementations

○ e.g., 7.8k Rust LoC

● Much less maintenance burden

--- Lean's core type system rarely

changes

