KLean: Extending Operating System
Kernels with Lean

Di Jin' Ethan Lavi' Jinghao Jia?> Robert Y. Lewis' Nikos Vasilakis’

'Brown University
2University of lllinois Urbana-Champaign

BPF: Linux's Safe Extension Language

Safe customizability without the cost of 9: cilium
&
9)

context switching or data movement I ‘atran
e Networking ‘. @ Firefox @'docker

[PrOfI li ng 3rd Workshop on eBPF and Kernel Extensions (eBPF)

ccccccc

BPF Performance Tools (book)

e Security

SEPTEMBER 11, 2024 8:30AM-13:00PM PST / 5:30PM-10:00PM CEST

eBPF Summit 2024

Now in its fifth year, the eBPF Summit is the virtual event
for all things within the Open Source eBPF ecosystem.
Whether you are new to the eBPF community or an

B M C [N S D I ’2 1] by G h Ig Off et al) established expert, please join us for the conference that

brings together everyone building, using, or interested in

X R P [O S D I) 22] by Z h O n g et a I eBPF as a platform. You'll find everything from deep dives
. and hands-on challenges to visionary talks that chart the

. fut f thi ing technology.

ghOSt [SOSP’21] by Humphries et al."— 5% seto0c

e Storage

e Scheduling

e Termination
BPF Review * Type safety
e Memory safety
Higher-level Static analysis °
language (C/Rust/...) Abstract interpretation
Userspace | Kernel \ °
High-level
invariants (\
Type info Type info Kermel
Execution BPF [BPF] BPF — C%de
semantics bytecode Verifier bytecode |—
State
User-written Verified

extension x BPF program -

BPF's Vision

"eBPF is a crazy technology — like putting JavaScript into the
Linux kernel..." --- Brendan Gregg

"BPF programs are safe and portable kernel modules" --- Alexei
Starovoitov

"Think of eBPF as a new type of software which bridges the gap
between a typical monolithic kernel and microkernel..." --- Daniel
Borkmann

Battling the Verifier

"l want to build a low-latency KV store.
Let me use BPF for this."

Unintuitive error with

Battling the Verifier obscure error message

"Wait...why is my
perfect code rejected?"

R2 pointer arithmetic on pkt_end prohibited

s if (index < (pkt_end - ptr)/4) ¥
if (ptr + 4*index < pkt_end)

Battling the Verifier

"But my program has just
400 instructions."

BPF program is too large. Processed 1000001 insn
processed 1000001 insns (limit 1000000) max_states_per_insn

/

Analysis can time out for small
programs with complex control flow

BPF verifier precision tracking improvements

B attl | N g th e Ve rl f| er From: Andrii Nakryiko <andrii-AT-kernel.org>

To: <bpf-AT-vger.kernel.org>, <ast-AT-kernel.org>, <daniel-AT-iogearbox.net>
Subje
Date: outhor Martin KaFai Lau <kafai@fb.com> 2021-09-21 17:49:41 -0700

M
Czss' committer Alexei Starovoitov <ast@kernel.org> 2021-09-26 13:07:27 -0700

" I commit 354e8f19701821d4952458f77blab6c3eb24d530 atch
Just need to submita | 4 {passly
This tree aa7b59f3430c464970949823bb235eaddaf092f4

kernel patch for better | scaa parent 27113cs9b6d0ass7ba0ae72d4 F3832f58b0651 (diff)
analysis " patchi download linux-354e8f1970f821d4952458f77blab6c3eb24d530. tar. gz

Patch
This

supr{ DPF: Support <8-byte scalar spill and refill

Patch| The verifier current]v does not save the rec state when

qSubject: [PATCH] bpf, verifier: Improve precision for BPF_ADD and BPF_SUB
iDate: Tue, 10 Jun 2025 18:13:55 -0400 [thread overview]

fMessage-ID: <20250610221356.2663491-1-harishankar.vishwanathan@gmail.com> (raw)
.f

' 9This patch improves the precison of the scalar(32)_min_max_add and —
scalar(32)_min_max_sub functions, which update the u(32)min/u(32)_max
ranges for the BPF_ADD and BPF_SUB instructions. We discovered this more
precise operator using a technique we are developing for automatically
synthesizing functions for updating tnums and ranges.

According to the BPF ISA [1], "Underflow and overflow are allowed during
arithmetic operations, meaning the 64-bit or 32-bit value will wrap".
Our patch leverages the wrap-around semantics of unsigned overflow and
underflow to improve precision.

Below is an example of our patch for scalar_min_max_add; the idea is 8
analogous for all four functions.

Battling the Verifier

"Just need to fix this
kernel vulnerability |
created”

AXCVE-2023-2163 Detail
MODIFIED

AKCVE-2022-23222 Detail

MAODICICN

AXCVE-2017-17864 Detail

Description

kernel/bpf/verifier.c in the Linux kernel through 4.14.8 mishandles states_equal comparisons between the pointer data type and the
UNKNOWN_VALUE data type, which allows local users to obtain potentially sensitive address information, aka a "pointer leak."

M etrICS CVSS Version 4.0 CVSS Version 3.x CVSS Version 2.0

NVD enrichment efforts reference publicly available information to associate vector strings. CVSS information contributed by other sources is also displayed.
CVSS 3.x Severity and Vector Strings:

w NIST: NVD Base Score: | 3.3LowW Vector: CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N

References to Advisories, Solutions, and Tools

By selecting these links, you will be leaving NIST webspace. We have provided these links to other web sites because they may have

Battling the Verifier

Usability problem: BPF programs are difficult to develop

e Code patterns can get rejected due to verifier's inaccuracy

o Pointer arithmetics restricted for the accuracy of points-to analysis
o Control-flow complexity restricted by analysis time limit
@)

Maintenance burden problem: the kernel is difficult to maintain

e Constant refinements for analysis accuracy
e Bugs caused by the frequent changes

10

Rethink the Design of Safe Kernel Extensions

BPF's design demands a sound static analysis to be accurate, which is
fundamentally hard.

Soundness: accepted extensions are safe

Accuracy: safe extensions are accepted (maximally)

Decouple the obligations using a proof-carrying language

Soundness < safety specification & checking — Kernel: maintenance burden ¥

Accuracy ¢ safety proving — Userspace: usability J .

KLean: Proposed Design

We propose KLean: a safe kernel
extension framework using Lean

e In-kernel Lean environment

o Type checker
o Runtime

e Lean-kernel interface
o Lean specification of kernel API
exposed for extension

e Proof infrastructure
o Domain-specific languages and
proof tactics

Simpler DSLs]

Y

Full Lean code }

Proof

infrastructure

Lean

)
Q)
(©)
=
®
-
@
Q
35
(@]
o
Qo
@

Elaborator | - - - - -+ -—-—=
Userspace

Kernel

Global state /

Lean type
checker

H

Kernel data /

I _}I

1

Lean-kernel Verified Lean :
interface code [

1

1

L&ﬁ?ﬂﬁﬁé____:)

12

© O NO O~ OWON -

O ©W O NO O P~ OWOWON -

—_—

KLean: Proposed Design

— KLean.lean

__

iclass KStateM (m : Type — Type) [Monad m] where
' get_random_n : m UInt32 |

© printk (s : String) : m Unit | Kernel-state-accessing

+ lock (1 : Lock) : m Unit API
i -- more defs ! /////////,

Expected function

class XDPExt where . CIIIIIIIIIIIIIN Tl R Signature
iprog (m_: Type - Type) (p : Pkt) [KStateM m] m Action |
'prog_lock_correct : lockOrdered prog =

— Expected proof for

— MyEXxt.lean :
import KLean overall safety properties
def myext (m : Type - Type) (p : Pkt) [KStateM m] : m Action := do .

'let x — KStateM.get_random_n Implementmg _
KStateM.printk s!"Hello {x}" - executable function

_'return Action.Pass - R
Il't'r_J_?'O:I:'?Ip::rtl}'/_r"):t:'(_)'_g:_:]:'(_z_Q_l'(:_:(;zE'):r:r:'e'_g_-'t:::_?:::::_*b """""" 3 PrOVIdIng prOOf
def ‘extMain : XDPExt := { :

. Prog := myprog | Register KLean
i prog_lock_correct := myprog_lock_correct .) 13
Y | extension

KLean's Kernel-side Benefits

e Less maintenance burden
o Lean type checker as verifier --- relatively minimal
o Decidable and (mostly) efficient algorithm

o Rare changes (except Lean-kernel interface)

e Better specification language --- CIC type system
o Decouples specification from verification
o Allows writing modular and reusable specifications

o Allows specifying complex safety properties (e.g. locking order)

14

KLean's Userspace-side Benefits

e Better usability: more expressive and well-defined language

+ No unintuitive restrictions on code patterns

+ No control-flow complexity limit

— No automatic in-kernel safety proving

L This is a plus (with some work) for KLean:
we can still do automation in userspace

e Proof infrastructure --- implemented through meta-programming

o Domain-specific languages and proof tactics

o BPF-style full proof automation

15

LPF: a KLean-based BPF Alternative
Untouched KLean

Abstract interpretation '”fraStrUCtU{e

C-like DSL Proof-producing analysis

U:Serspace Kernel
White-box automation

&}% / Core Lean ‘
_ ! type info
Type info Kernel
. : - Code
SE;‘;‘;‘:ft'gg [LPF Verifier } ; Cofxtfa” &
: State
. Core Lean
User-written

) Program
extension x | g N

G QO R G G
a b~ WON-~O0

N
D

0o ~NO Ok WN -~

©

LPF: a KLean-based BPF Alternative

— MyExt.lean

ilet c_module := C_PROG_START
ivoid swap(int *a, int *b) {
' *a = *a + *b;

*b *a - *b:

*3 *a - *b:

)

iint main(void *ctx) {

swap (&x, &y);
z = ip[x];

'}
\C_PROG_DONE

- C-like DSL

Lowering and
proof generation

—

17

0o ~NO Ok WN -~

[L L U G .
o ok WN -~ O OO

LPF: a KLean-based BPF Alternative

— MyExt.lean
let c_module := C_PROG_START
vord swap(int 7a, it) *a: [0, 3] *b: [0, 3]
*h = *a - *b: *a: [0, 6] *b: [0, 3]
*a = *a - *b: *a: [0, 6] *b: [-3, 6]
) *a: [-3, 9] *b: [-3, 6]
int main(void *ctx) {
év.vz.ap(&x &y); x: [0, 3] y: [0, 3] ip: size 4
z = ip[x]; X: [-6, 9] y: [-3, 6] 1p: size 4
Invalid access
}
C_PROG_DONE

let m := 1lpf_verify c_module

18

0o ~NO Ok WN -~

[L G G §
A WODN -~ O ©

15

.
~N O

LPF: a KLean-based BPF Alternative

let m := 1lpf_verify c_m

odule [swap_range]

— MyExt.lean
let c_module := C_PROG_START
void suep(int va, int +b) { w03 b3
ib = ko - b, *a:[0,6] _ *b:[0, 3]
*q = %g - *b’ *a [O’ 6] *b [-3! 6]
) *a: [-3, 9] *b: [-3, 6]
int main(void *ctx) {
év'v,c;p(&x &y) x: [0, 3] y: [0, 3] ip: size 4
z = ip[x]; X: [-6, 9] y: [-3, 6] ip: size 4
Invalid access
}
C_PROG_DONE
theorem swap_range : ..

19

0o ~NO Ok WN -~

[L G G §
A WODN -~ O ©

15

.
~N O

LPF: a KLean-based BPF Alternative

let m := 1lpf_verify c_module [swap_range]

— MyExt.lean
let c_module := C_PROG_START
void suap(int va, nt) @03 *b:[0,3
“b = *a - *b. *a:[0,6] _ *b: [0, 3]
*q = %g - *b’ *a [O’ 6] *b [-3! 6]
) *a: [-3, 9] *b: [-3, 6]
int main(void *ctx) {
év.vz;p(&x &y); x: [0, 3] y: [0, 3] ip:size 4
z = ip[x]; x: [0, 3] y: [0, 3] ip: size 4
x:[0,3] vy:[0,3] z:[0,255] ip:size4d
}
C_PROG_DONE
theorem swap_range : ..

20

Things We Skipped
Additional benefits

e Lean's Imperative-friendly IR and other optimization tricks
e Built-in verified data structure (e.g. hash table)

Other challenges

e Bounding time and space complexity
e Performance-TCB tradeoff

Potential applications

e Efficient system call virtualization
e Trustworthy user-implemented drivers

e Complete data path delegation

21

Summary

We propose KLean: a safe OS kernel extension framework using Lean,
which includes

e In-kernel Lean environment for safety checking and program execution

e Lean-kernel interface for safety specification
e Proof infrastructure in user space for easier/automatic safety proving

and such design will

e improve usability by providing intuitive programming interface and helpful proof

tactics
e reduce kernel maintenance burden by simplifying safety specification as well

as safety verification -

Di Jin

Ethan Lavi

Jinghao Jia RobertY. Lewis Nikos Vasilakis

23

Backup slides

Challenges: Performance

Enemies

e Frequent memory allocation
e Costly abstraction mechanism
e TCB size restriction

Allies

e Lean's imperative-friendly IR and

optimization
e Implementation shadowing

Trustworthy

| Lean core interpreter |

.| Verified Lean

| compiler

Lean core interpreter + ® | JIT compilation |

native optimized extensions

| Lean-to-C + CompCert|®

[Lean-to-C + LLVM] ¢

>

) g
Runtime Performance

25

Simplifying Kernel-side Verification

Subsystem | LoC | Bug fix/total | Ratio Core Lean type checker
commits . . .
e Decidable and efficient algorithm
mm 130k | 2404/24522 | 9.8% , , ,
e Multiple external implementations
sched 35k | 532/4671 11.4% E>
o e.g., 7.8k Rust LoC

net/core 64k | 1311/10051 | 13% _
e Much less maintenance burden

fs/ext4 47k | 390/5354 7.3%

--- Lean's core type system rarely
bpf 57k | 910/3945 23.1%

Linux kernel bug fix commits by subsystem changes

(at version 6.16-rc6)

