i e 2

REPUBLIQUE s
Charles FRANCAISE hw/‘
University Libert

Fraternité

Tapestry

Revealing Wait-For Dependencies Between Application Threads

Tomas Faltin’2, Himadri Chhaya-Shailesh?, Julia Lawall?, Jean-Pierre Lozi?
"Charles University, ?Inria Paris

Motivation

o

Synchronization
bottlenecks

Multithreaded
applications face
performance issues
due to
synchronization
causing delays and
inefficiencies.

%4+ Charles University

®

Limitations of
traditional
profiling

Conventional tools
focus on function or
hardware slowdowns
but miss inter-thread
dependencies
impacting
performance.

(&

Challenges of
busy-waiting

Busy-waiting
threads spin in
userspace, hiding
actual wait times as
continuous execution
in traces.

Full picture
visualization

Tapestry visualizes
blocking and busy-
waiting
dependencies
together, revealing
deeper insights into
multithreaded
performance.

Motivation

Synchronization
bottlenecks

Multithreaded
applications face
performance issues
due to
synchronization
causing delays and
inefficiencies.

%4+ Charles University

4 a)

®

Limitations of
traditional
profiling

Conventional tools
focus on function or
hardware slowdowns
but miss inter-thread
dependencies
impacting
performance.

(&

Challenges of
busy-waiting

Busy-waiting
threads spin in
userspace, hiding
actual wait times as
continuous execution
in traces.

Full picture
visualization

Tapestry visualizes
blocking and busy-
waiting
dependencies
together, revealing
deeper insights into
multithreaded
performance.

Motivation

o

Synchronization
bottlenecks

Multithreaded
applications face
performance issues
due to
synchronization
causing delays and
inefficiencies.

%4+ Charles University

4 ,®)

Limitations of
traditional
profiling

Conventional tools
focus on function or
hardware slowdowns
but miss inter-thread
dependencies
impacting
performance.

(&

Challenges of
busy-waiting

Busy-waiting
threads spin in
userspace, hiding
actual wait times as
continuous execution
in traces.

Full picture
visualization

Tapestry visualizes
blocking and busy-
waiting
dependencies
together, revealing
deeper insights into
multithreaded
performance.

Motivation

o

Synchronization
bottlenecks

Multithreaded
applications face
performance issues
due to
synchronization
causing delays and
inefficiencies.

%4+ Charles University

®

Limitations of
traditional
profiling

Conventional tools
focus on function or
hardware slowdowns
but miss inter-thread
dependencies
impacting
performance.

Challenges of
busy-waiting

Busy-waiting
threads spin in
userspace, hiding
actual wait times as
continuous execution
in traces.

_ J

Full picture
visualization

Tapestry visualizes
blocking and busy-
waiting
dependencies
together, revealing
deeper insights into
multithreaded
performance.

Motivation

o

Synchronization
bottlenecks

Multithreaded
applications face
performance issues
due to
synchronization
causing delays and
inefficiencies.

%4+ Charles University

®

Limitations of
traditional
profiling

Conventional tools
focus on function or
hardware slowdowns
but miss inter-thread
dependencies
impacting
performance.

(&

Challenges of
busy-waiting

Busy-waiting
threads spin in
userspace, hiding
actual wait times as
continuous execution
in traces.

Full picture
visualization

Tapestry visualizes
blocking and busy-
waiting
dependencies
together, revealing
deeper insights into
multithreaded
performance.

Synchronization

Busy-waiting examples

Blocking example

/* Barrier */
if (atomic_inc(thr_count) < n_thr)
while (*barrier_end != true)
PAUSE;
else *barrier_end = true;

futex(*addr, WAIT, val,

/* Simple lock */
while (atomic_test and set(lock, 0, 1)
= Q)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur tkt < tkt) PAUSE;

%4+ Charles University

Synchronization

Busy-waiting examples

Blocking example

/* Barrier */
if (atomic_inc(thr count) < n_thr)
I= true)

futex(*addr DWAIT, val,

/* Simple lock */

while (atomic_test_and_e, 1)

PAUSE;

/* Ticket lock */
tkt = atomic inc(max_tkt);

while (Fcur_tkD < tkt) PAUSE;
2

%4+ Charles University

Wait-for Dependency

Synchronization

Busy-waiting examples Blocking example

/* Barrier */
if (atomlc 1nc(:chr* count) < n thr') futex(®addr DWAIT, val, ...)

How to unify the concept of

dependencies for synchronization?

PAUSE ;

/* Ticket lock */
tkt = atomic inc(max_tkt);

while (tkt) PAUSE ;
2

%2+ Charles University

Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

Blocking example

/* Barrier */
if (atomic_inc(thr_count) < n_thr)
while (*barrier_end != true)
PAUSE;
else *barrier_end = true;

futex(*addr, WAIT, val,

/* Simple lock */
while (atomic_test and set(lock, 0, 1)
= Q)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur tkt < tkt) PAUSE;

%4+ Charles University

|ldentify common patterns

10

Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

Blocking example

/* Barrier */
if (atomic_inc(thr count) < n_thr)

while «Eﬁérrieﬁ;zﬁﬂ>!= true)

PAUSE;
else *barrier_end = true;

futex(WAIT, val, ...)

/* Simple lock */
while (atomic_test_and_set 9, 1)
= Q)
PAUSE;

/* Ticket lock */
tkt = atomic inc(max_tkt);

while (¥Cur_tkD < tkt) PAUSE;

%4+ Charles University

The shared variable memory address

A dependency triple:

, P22, 2>

11

Ordinary Inter-thread Wait-for Dependencies

blocks if the futex word

Busy-waiting examples Blocking exampl¢ equals to the supplied val
/* Barrier */
if (atomic_inc(thr count) < n_thr) futex(WAIT, val, ...)
while (@rr‘ietr‘ue)
PAUSE;

else *barrier_end = true;

/* Simple lock */

while (atomic_test_and_set 9, 1)

0)

A comparison operator

PAUSE; A dependency triple:

/* Ticket lock */

tkt = atomic inc(max_tkt);
while (¥cur_tk®(<)tkt) PAUSE;

%4+ Charles University 12

Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

blocks if the futex word

Blocking example o 0 jals to the supplied val

/* Barrier */
if (atomic_inc(thr count) < n_thr)

while (@arrier_end(JErue)

PAUSE;
else *barrier_end = true;

futex({addr) WAIT,val) ...)

/* Simple lock */
while (atomic_test_and_set 9,@
0)
PAUSE;

/* Ticket lock */

tkt = atomic inc(max_ tkt);
while (ur_tk®(< kD) PAUSE;

%4+ Charles University

A constant value to compared against

A dependency triple:

@D, & @Y

13

Ordinary Inter-thread Wait-for Dependencies

blocks if the futex word
equals to the supplied val

SINEAVEN Ry <barrier_end, ==, true> Blocking exampl¢

/* Barrier */
if (atomic_inc(thr count) < n_thr) futex(wAIT, cel)
while (@arrier_end(DErue)

PAUSE;
else *barrier_end = true;

<addr, ==, val>

<lock, ==, ©>

/* Simple lock */

while (atomic_test_and_set 9,@

0
PAUSE;) A dependency triple:

—my | <> O @
/* Ticket lock */

tkt = atomic inc(max_tkt);
while () PAUSE ;

%4+ Charles University 14

Ordinary Inter-thread Wait-for Dependencies

blocks if the futex word
equals to the supplied val

SIIAVEN DRy <barrier_end, ==, true> Blocking exampl¢

/* Barrier */

if (atomlc 1nc(:chr* count) < n thr') futex(WAIT, cel)

| How to capture ordinary inter-thread wait-

for dependencies?

A dependency triple:

@D, & @Y

/* Ticket lock */ m
tkt = atomic inc(max tkt);
while (¥cur_tkB(<)EkD) PAUSE;

%2+ Charles University 15

Ordinary Inter-thread Wait-for Dependencies

blocks if the futex word

Blocking example o 0 jals to the supplied val

Busy-waiting exa

/* Barrier */

if (atomlc 1nc(thr* count) < n_thr) futex(WAIT, ce)

PAUSE A dependency triple:

—my | <> O @
/* Ticket lock */

tkt = atomic inc(max_ tkt);
while () PAUSE ;

%4+ Charles University 16

Overview

A Linux tracing framework

* A pipeline: Analyzer - Tracer = Viewer

Critical path

Dependency

! |
2(H __ __ r_
Captures blocking and busy-waiting dependencies EIE' — — — [
=
Combines hardware watchpoints with El6y = S
f KDOi @ g _ !
software breakpoints gm___ — S — —
&12 i
Lo 150 151

Spinning

%2+ Charles University

Time in seconds (s) from the program start

Running

17

Overview

A Linux tracing framework Critical path

* A pipeline: Analyzer - Tracer = Viewer

Captures blocking and busy-waiting dependencies
Combines hardware watchpoints with
software breakpoints

Relative thread IDs
o

—_
[l

Blocking captured by trace-cmd via futex
syscalls

Spinning

%2+ Charles University

(]
=

—_
CA

—_
+

]

Dependency

|
»

1.49 1.50
Time in seconds (s) from the program start

Running

151

18

Overview

A Linux tracing framework Critical path

* A pipeline: Analyzer - Tracer = Viewer

Captures blocking and busy-waiting dependencies
Combines hardware watchpoints with
software breakpoints

Relative thread IDs
o

—_
[l

How to capture busy-waiting?

Spinning

%2+ Charles University

(]
=

—_
CA

—_
4=

]

Dependency

-

Time in seconds (s) from the program start

Running

I S
—

—— —— 1 —— —
1.49 1.50 1.51

19

Architecture: Analyzer > Tracer > Viewer

Finding all busy-wait loops in binaries

Heuristic similar to one proposed by
Jannesari & Tichy, IPDPS 2010

* The loop exit condition depends on memory
load

 The conditions’ value is not changed by the
loop body

%4+ Charles University

/* Barrier */

if (atomic_inc(thr_count) < n_thr)
while (*barrier _end != @) PAUSE;

else *barrier_end = 1;

/* Simple lock */
while (atomic_test and_set(
lock, @, 1) I= 9)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur tkt < tkt) PAUSE;

20

Architecture: Analyzer > Tracer > Viewer

Capturing busy-waiting synchronization

a) Capture and of busy-wait loop

b) Capture dependency) if (atomic_inc(thr_count) < n_thr) {

e ——

J/>while *barrier _end |!= 0) PAUSE;

» 7T else {
gl

\ [*barrier_end]= 1;
dependency }

%4+ Charles University 21

Capturing Busy-Waiting Synchronization

a) Capture begin and end of busy-wait loop

Statically patch the beginning and the end of
each busy-wait loop to store a tracepoint

%4+ Charles University

while (*barrier_end != @) PAUSE;

spinloop:
pause
mov (%rax), %rbx
cmp %rbx, %rcx
jne spinloop

22

Capturing Busy-Waiting Synchronization

a) Capture begin and end of busy-wait loop

Statically patch the beginning and the end of
each busy-wait loop to store a tracepoint

%4+ Charles University

store_time begin(spinld);
while (*barrier_end != @) PAUSE;
store_time_end(spinId);

call store time begin
spinloop:
pause
mov (%rax), %rbx
cmp %rbx, %rcx
jne spinloop

call store time_end

23

Capturing Busy-Waiting Synchronization

b) Capturing dependency

| Spin-variable|(dependency endpoint)
Is found using static analysis

How to find|dependency store?

%4+ Charles University

if (atomic_inc(thr_count) < n_thr)

while (¥parrier end|!= @) PAUSE;
else

I*barrier=end = 1d

spinloop:
pause
mov |(%rax)
cmp %P¢X, % CX
jne spinloop

I
6
Y

Spin-variable

mov %rdx, (%rdi)

24

Capturing Busy-Waiting Synchronization

b) Capturing dependency

if (atomic_inc(thr_count) < n_thr)

while (*parrier end|!= @) PAUSE;
else

*barrier end = 1,;

Solution: Use write watchpoints

(as in debuggers)

How to find|dependency store?

%4+ Charles University

cmp %r$x, % CX
jne spjinloop

I
6
Y

mov %rdx, (%rdi)

25

Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write
watchpoint on the dependency variable
address

(i) When the watchpoint is triggered:

« Store the dependency

%4+ Charles University

if (atomic_inc(thr_count) < n_thr)

while (¥parrier end|!= @) PAUSE;
else

I*barrier=end = 1d

call set watchpoint(%rax)
spinloop:
pause
mov |(%rax)
cmp %P#X, % CX
jne spjinloop

I
Y

Spin-variable

mov %rdx, (%rdi)

26

Capturing Busy-Waiting Synchronization

b) Capturing dependency if (atomic_inc(thr_count) < n_thr)
while (¥parrier end|!= @) PAUSE;
else
(i) Statically inject code that sets a write *barrier end = 1,
watch
addres Droble =Ye har O - NO
0 0 U 0l0

cmp %P$X, % CX
jne spjinloop

I
Y

mov %rdx, (%rdi)

%2+ Charles University 27

Capturing Busy-Waiting Synchronization

b) Capturing dependency if (atomic_inc(thr_count) < n_thr)
while (jbarrier end|!= @) PAUSE;
else
(i) Statically inject code that sets a write *barrier end = 1,
watch
addres 0 0 ayna C aplace we olo

cmp %r$x, % CX
jne spjinloop

I

I
Y

mov %rdx, (%rdi)

%4+ Charles University 28

Capturing Busy-Waiting Synchronization

b) Capturing dependency if (atomic_inc(thr_count) < n_thr)
while (jbarrier end|!= @) PAUSE;
else
(i) Statically inject code that sets a write *barrier end = 1,
watch
addres 0 0 ayna C aplace we olo

cmp %r?x, %
jne spjinloop
I

Y

mov %rdx, (%rdi)

%4+ Charles University

29

Capturing Busy-Waiting Synchronization

b) Capturing dependency if (atomic_inc(thr_count) < n_thr)
while (jbarrier end|!= @) PAUSE;
else
(i) Statically inject code that sets a write |*bar~r~ier=end = 1;|
watchpoint on the dependency variable
address call set_watchpoint(%rax)

spinloop:
pause
mov |(%rax)l, %rbx

(i) When the watchpoint is triggered:
1. Store the dependency
2. Disable the watchpoint

3. Set a breakpoint on the store code % | cmp %r*li';x, %rcx
address (%rip) for future dependencies jne spjinloop
on_trigger(watch_id): e |
store_dep(<%rdx,==,0>); e \',
disable_watch(watch_id); mov %rdx, (%rdi)
set break(%rip,&store dep);

%4+ Charles University 30

Architecture: Analyzer > Tracer > Viewer

Post-processing of raw traces and visualization Critical path Dependency
« Connects events with the same dependency ey
| []

(]
=

—_
CA

Relative thread IDs

T, = Tg: Athread T, resolves a dependency Ty
was waiting on

[am—
=]

 Forms a dependency graph

_
=

Critical path is the longest path in the : — —
dependency graph

1.49 1.50 1.51
Time in seconds (s) from the program start

Spinning Running

%2+ Charles University 31

Observing NUMA Effect of Spinning Barrier

NAS/BT: 64 threads —— —
NUMA: 2x32-cores 00 V"= =— = —
- = = — =
- = = = —
-
e
g 401 =
o
S =
-g — = = ==
= = = - —= :
22 = = :
0_
1.00 1.01 1.02 1.03

Time in seconds (s) from the program start

%4+ Charles University 32

Observing NUMA Effect of Spinning Barrier

NAS/BT: 64 threads > - — : —
NUMA: 2x32-cores 60 = — — —e— =
Dependency store = ‘ — = — =
7 — Node 1
-
e
240/ =>
=
:E —ers -
z ==—————=<>
320 = = — - (i) - = =
P 1 =
= = == ‘ = ==<>—— t~ Node O
Critical path
> =
1.01 1.02 1.03

Time in seconds (s) from the program start

%4+ Charles University 33

Diagnosing Pathological Busy-Waiting

Running two NAS/LU in parallel
OpenMP set to blocking

Bench. Single Parallel

BT 2.67 5.72
CG 0.09 0.20
EP 0.25 0.52
FT 0.18 0.35
IS 0.02 0.05
LU 2.22 100.09
_ _ MG 014 026
Why is the parallel execution of sp 158 386
UA 358 7.23
LU so slow? (a) Single vs. Parallel.

%4+ Charles University 34

Diagnosing Pathological Busy-Waiting

|]

20— | Resolvi t
‘ £SOIviNg STOTE Thread starts

5 18 Dependency runr"ng and |etS
; another thread
S rogress
216 BIOS
= _ . .
@ Thread not Critical path ~
-% I running | dependency chain
212

10; —

1.49 1.50 1.51
Time in seconds (s) from the program start

%2+ Charles University

Faster Busy-Waiting in VMs vs. Bare Metal

Running two NAS/LU in parallel:

« BM: instances run on bare metal

 VM: each instance runs in a separate VM

OpenMP set to default

« Busy-waiting for a fixed number of
iterations, then blocking

Bench. BM VM

BT 13.22 11.94

CG 8.44 5.02

. - - EP 0.53 0.45
Why is running in VM faster T 0% oS
LU ; .

than on bare metal? Lo 0 751 s
SP 31.9 22.57

UA 300.2 185.7

(b) Bare Metal (BM) vs. VM.

%4+ Charles University

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

{ — " . R i i i — — — — .
1 — —_— — " — —_— AR . — T . D -
| — — — — e E— —-— — — ————i
1 —_— —_— — — — R ™ ™ ™ . e R s — il
1 — " . — N . — N i — e . —_— — _— —_ L
1 — —_ — s — —_— —_— A = . — N . — N — ——
30 4 — T . — N . T R i R . L T — — T . 30*
! — S— — e = e = = = — — — T e ——— |
1 —_— e - — — | e e e —recce_z
wnn 1 — p— — —— —— - T —— — = —— " . — — wn
Q { — P — e N W S, — i el el Q
o | — EE — T s e ™ T s o Y. — — [I— o)
1 —_— — —_— — N e e — _— — O . —

c 1 — . — — i — S S —— —_— | —t =
(o] 1 — s B — i e Sl . el s — . el e o
5] { — — s i i — R~ s — — — e [«F]
S 204 -— e — — i B e — L WS St

| 1 - — — | —— e . S B — e, —— ———em |
~N— 1 — R — — e — SR c— " o T, ———m =
) — e o e R i R L = e S — s —
> — N . — N . —— — B . — " . e — O . g

ot - s — T o o — s e o
N — " —_— —— O i . &'—_ s — _§- N
“ — —_— — —" — —— — T c— — - “

'B‘ - S — R — — — e — ——— p—

—_— —_— — S e . R e, e B e R e ———m D

M 10 . —— e — — — E Ty SNSRI e SR, — ———— m

Dependency store Q| Critical path Blocking

%4+ Charles University 37

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal
wnn —_ — e e
~ —
= — e ——
8 — e — e
| 3 1 -—
N — " R —
) — " e = ™
.2 -_— —— — —_—
N — — .
2 —_ —— —
25 - - —e et
10! T —————
O_

No blocking 2>
Threads remain entirely
in the busy-waiting phase

T | - R e e T o ST ey - T
e | | S o o o o\ - L S

10.30
the program start

Relative thread IDs

VM

W
&

[}
S

[
<

Frequent blocking 2>

Threads frequently exhaust

their busy-waiting iteration

budget, i.e., they must

spin faster

%2+ Charles University

Blocking

38

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

W
=

[}
=

Relative thread IDs

How could threads in VM spin faster?

[
@

R

%2+ Charles University

39

Pause-Loop Exiting (PLE)

A hardware feature of Intel VMX

PLE triggers VM exits for spinloops to
help the hypervisor mitigate guest-kernel

for (i=0; i < 10°; i++) PAUSE;

lock holder/waiter preemption issue

10° Instr. 10° PAUSEs

‘PLE VM-execution control is ignored in Config. Rt(s) f(GHz)
” H G H G
userspace’ [Intel manual, §36.7.3]
H 14.12 3.89 5.0 0 1.0 0
G PLE 6.19 3.89 0 5.0 0 0
G noPLE 1417 3.89 0 5.0 0 1.0

Table 2. Impact of PLE on a userland busy-wait loop with 10°
iterations (Rt=runtime, f=CPU frequency, H=host, G=guest).

%4+ Charles University

40

Pause-Loop Exiting (PLE)

A hardware feature of Intel VMX

PLE triggers VM exits for spinloops to
help the hypervisor mitigate guest-kernel
lock holder/waiter preemption issue

for (i=0; i < 10°; i++) PAUSE;

10° Instr. 10° PAUSEs

‘PLE VM-execution control is ignored in Config. Rt(s) f(GHz)
” H G H G
userspace” [Intel manual, §36.7.3]
H 14.12 3.89 5.0 0 1.0 0
G PLE 6.19 3.89 0 5.0 0 0
And yet, with PLE enabled, user G noPLE 1417 3.9 0 50 0 1.0

Table 2. Impact of PLE on a userland busy-wait loop with 10°

PAUSE instructions are not even iterations (Rt=runtime, f=CPU frequency, H=host, G=guest).

retired on Skylake and Cascade Lake
machines

%4+ Charles University 4

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for
blocking and busy-waiting synchronization

%4+ Charles University

42

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for
blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

- Combining the use of hardware watchpoints and software breakpoints

=
—_
L

0= — T
. — T
218 — I —
o —
= — N — 1
g1y ek — —
21 {

10 ___________ l: —_——T—

1.49 1.50 1.51
Time in seconds (s) from the program start

%4+ Charles University 43

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for
blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

- Combining the use of hardware watchpoints and software breakpoints

Invest h lies using T — e ——
nvestigated three anomalies using Tapestry s
. . S16 _— I —
« NUMA effect on spin-barriers S ! }
>14= _— — —_—
g — — =‘—L‘——_=
- Pathological busy-waiting 212 {
E— = —
agn . 10="= —_— = = = = = == = = =
« Faster busy-waiting in VM vs. bare metal 149 150 151
Time in seconds (s) from the program start

 Found undocumented hardware effect on some Intel machines

%&+* Charles University 44

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for
blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

- Combining the use of hardware watchpoints and software breakpoints

"] " 20— —— l T——— l — l_l_l
Investigated three anomalies using Tapestry IR B
. . 316 —_— I —
« NUMA effect on spin-barriers 5 ! |
>14= — = —_—
g — ——
. : o z L S
Pathological busy-waiting 21 — =
mgm . 10 _— = ‘_ _— = = = ‘_ —_— e = = ‘_ _— =
« Faster busy-waiting in VM vs. bare metal 149 150 151
Time in seconds (s) from the program start
 Found undocumented hardware effect on some Intel machines
Thank you!

%4+ Charles University 45

	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Synchronization
	Slide 8: Synchronization
	Slide 9: Synchronization
	Slide 10: Ordinary Inter-thread Wait-for Dependencies
	Slide 11: Ordinary Inter-thread Wait-for Dependencies
	Slide 12: Ordinary Inter-thread Wait-for Dependencies
	Slide 13: Ordinary Inter-thread Wait-for Dependencies
	Slide 14: Ordinary Inter-thread Wait-for Dependencies
	Slide 15: Ordinary Inter-thread Wait-for Dependencies
	Slide 16: Ordinary Inter-thread Wait-for Dependencies
	Slide 17: Overview
	Slide 18: Overview
	Slide 19: Overview
	Slide 20: Architecture: Analyzer  Tracer  Viewer
	Slide 21: Architecture: Analyzer  Tracer  Viewer
	Slide 22: Capturing Busy-Waiting Synchronization
	Slide 23: Capturing Busy-Waiting Synchronization
	Slide 24: Capturing Busy-Waiting Synchronization
	Slide 25: Capturing Busy-Waiting Synchronization
	Slide 26: Capturing Busy-Waiting Synchronization
	Slide 27: Capturing Busy-Waiting Synchronization
	Slide 28: Capturing Busy-Waiting Synchronization
	Slide 29: Capturing Busy-Waiting Synchronization
	Slide 30: Capturing Busy-Waiting Synchronization
	Slide 31: Architecture: Analyzer  Tracer  Viewer
	Slide 32: Observing NUMA Effect of Spinning Barrier
	Slide 33: Observing NUMA Effect of Spinning Barrier
	Slide 34: Diagnosing Pathological Busy-Waiting
	Slide 35: Diagnosing Pathological Busy-Waiting
	Slide 36: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 37: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 38: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 39: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 40: Pause-Loop Exiting (PLE)
	Slide 41: Pause-Loop Exiting (PLE)
	Slide 42: Conclusion
	Slide 43: Conclusion
	Slide 44: Conclusion
	Slide 45: Conclusion

