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Synchronization 
bottlenecks​

Multithreaded
applications face 

performance issues 
due to 

synchronization
causing delays and 

inefficiencies.​

Limitations of 
traditional 
profiling

Conventional tools 
focus on function or 

hardware slowdowns 
but miss inter-thread 

dependencies
impacting 

performance.​

Challenges of 
busy-waiting

Busy-waiting
threads spin in 

userspace, hiding
actual wait times as 

continuous execution 
in traces.​

Full picture 
visualization

Tapestry visualizes 
blocking and busy-

waiting
dependencies 

together, revealing 
deeper insights into 

multithreaded 
performance.​

Motivation
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Synchronization

Busy-waiting examples
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Blocking example

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;
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while (*barrier_end != true) 
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Blocking example

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

`

Wait-for Dependency

How to unify the concept of 

dependencies for synchronization? 



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples
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Blocking example

Identify common patterns

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;
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Blocking example

The shared variable memory address

A dependency triple: 

<addr, ???, ???>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples
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Blocking example

A comparison operator

A dependency triple: 

<addr, ⊳⊲, ???>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
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Blocking example

A constant value to compared against

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
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Blocking example

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
<barrier_end, ==, true>

<addr, ==, val>

<lock, ==, 0>

<cur_tkt, ==, 0>



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples
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Blocking example

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
<barrier_end, ==, true>

<lock, ==, 0>

<addr, ==, val>
How to capture ordinary inter-thread wait-

for dependencies? 

<cur_tkt, ==, 0>
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Blocking example

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
<barrier_end, ==, true>

<lock, ==, 0>

<addr, ==, val>

Tapestry

<cur_tkt, ==, 0>



Overview

A Linux tracing framework

• A pipeline: Analyzer → Tracer → Viewer

Captures blocking and busy-waiting dependencies

Combines hardware watchpoints with 

software breakpoints

Critical path

Running

Dependency

Spinning
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A Linux tracing framework
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Captures blocking and busy-waiting dependencies

Combines hardware watchpoints with 

software breakpoints

Blocking captured by trace-cmd via futex

syscalls
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Overview

A Linux tracing framework

• A pipeline: Analyzer → Tracer → Viewer

Captures blocking and busy-waiting dependencies

Combines hardware watchpoints with 

software breakpoints

How to capture busy-waiting?

Critical path

Running

Dependency

Spinning

19



Architecture: Analyzer→ Tracer → Viewer

Finding all busy-wait loops in binaries

Heuristic similar to one proposed by 

Jannesari & Tichy, IPDPS 2010

• The loop exit condition depends on memory 

load

• The conditions’ value is not changed by the 

loop body

20

/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;
else *barrier_end = 1;

/* Simple lock */
while (atomic_test_and_set(

lock, 0, 1) != 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;



Architecture: Analyzer → Tracer→ Viewer

Capturing busy-waiting synchronization

a) Capture begin and end of busy-wait loop

b) Capture dependency

21

if (atomic_inc(thr_count) < n_thr) {

while (*barrier_end != 0) PAUSE;

} else {

*barrier_end = 1;

}

begin

end

dependency



Capturing Busy-Waiting Synchronization

a) Capture begin and end of busy-wait loop

Statically patch the beginning and the end of 

each busy-wait loop to store a tracepoint

22

while (*barrier_end != 0) PAUSE;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop



Capturing Busy-Waiting Synchronization

a) Capture begin and end of busy-wait loop

Statically patch the beginning and the end of 

each busy-wait loop to store a tracepoint

23

while (*barrier_end != 0) PAUSE;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

call store_time_begin

store_time_begin(spinId);

call store_time_end

store_time_end(spinId);



Capturing Busy-Waiting Synchronization

b) Capturing dependency

Spin-variable (dependency endpoint) 

is found using static analysis

How to find dependency store?

24

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Spin-variable



Capturing Busy-Waiting Synchronization

b) Capturing dependency

How to find dependency store?

25

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Solution: Use write watchpoints

(as in debuggers)



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

(ii) When the watchpoint is triggered:

• Store the dependency

26

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

call set_watchpoint(%rax)

Spin-variable



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

27

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

call set_watchpoint(%rax)

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Problem: limited number of watchpoints
E.g., four on x86



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

28

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

call set_watchpoint(%rax)

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Solution: dynamically replace watchpoints 

with software breakpoints



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

29

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

call set_watchpoint(%rax)

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Solution: dynamically replace watchpoints 

with software breakpoints

memory addresses

code addresses



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

(ii) When the watchpoint is triggered:

1. Store the dependency

2. Disable the watchpoint

3. Set a breakpoint on the store code 

address (%rip) for future dependencies

30

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

on_trigger(watch_id): 

store_dep(<%rdx,==,0>);

disable_watch(watch_id);

set_break(%rip,&store_dep);

call set_watchpoint(%rax)



Architecture: Analyzer → Tracer → Viewer

Post-processing of raw traces and visualization

• Connects events with the same dependency

TA → TB: A thread TA resolves a dependency TB

was waiting on

• Forms a dependency graph

Critical path is the longest path in the 

dependency graph

31

Critical path

Running

Dependency

Spinning
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Observing NUMA Effect of Spinning Barrier

NAS/BT: 64 threads

NUMA: 2x32-cores
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Observing NUMA Effect of Spinning Barrier

NAS/BT: 64 threads

NUMA: 2x32-cores

Node 0

Node 1

Spinning

Dependency store

Critical path
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Diagnosing Pathological Busy-Waiting

Running two NAS/LU in parallel

OpenMP set to blocking

Why is the parallel execution of 

LU so slow?
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Diagnosing Pathological Busy-Waiting

Critical path ~ 

dependency chain

RunningSpinning

Dependency

Resolving store

Thread not 

running

Thread starts 

running and lets 

another thread 

progress
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Faster Busy-Waiting in VMs vs. Bare Metal

Running two NAS/LU in parallel: 

• BM: instances run on bare metal

• VM: each instance runs in a separate VM

OpenMP set to default

• Busy-waiting for a fixed number of 

iterations, then blocking

Why is running in VM faster 

than on bare metal? 

LU

36x

LU

36x

36x

LU

36x

VM1

36x

LU

36x

VM2

36x

36x
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Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

Critical pathRunningSpinning Dependency store Blocking



38

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

Critical pathRunningSpinning Dependency store Blocking

Frequent blocking →

Threads frequently exhaust 

their busy-waiting iteration 

budget, i.e., they must 

spin faster

No blocking →

Threads remain entirely 

in the busy-waiting phase



39

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

Critical pathRunningSpinning Dependency store Blocking

Frequent blocking →

Threads frequently exhaust 

their busy-waiting iteration 

budget, i.e., they must 

spin faster

No blocking →

Threads remain entirely 

in the busy-waiting phase

How could threads in VM spin faster?
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Pause-Loop Exiting (PLE)

A hardware feature of Intel VMX

PLE triggers VM exits for spinloops to 

help the hypervisor mitigate guest-kernel 

lock holder/waiter preemption issue

“PLE VM-execution control is ignored in 

userspace” [Intel manual, §36.7.3]

// userland test:

for (i=0; i < 109; i++) PAUSE;
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Pause-Loop Exiting (PLE)

A hardware feature of Intel VMX

PLE triggers VM exits for spinloops to 

help the hypervisor mitigate guest-kernel 

lock holder/waiter preemption issue

“PLE VM-execution control is ignored in 

userspace” [Intel manual, §36.7.3]

And yet, with PLE enabled, user 

PAUSE instructions are not even 

retired on Skylake and Cascade Lake 

machines

// userland test:

for (i=0; i < 109; i++) PAUSE;
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Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization



43

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

• Combining the use of hardware watchpoints and software breakpoints



44

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies
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Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

• Combining the use of hardware watchpoints and software breakpoints

Investigated three anomalies using Tapestry

• NUMA effect on spin-barriers

• Pathological busy-waiting

• Faster busy-waiting in VM vs. bare metal

• Found undocumented hardware effect on some Intel machines

Thank you!
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