
Tapestry

Revealing Wait-For Dependencies Between Application Threads

Tomáš Faltín1,2, Himadri Chhaya-Shailesh2, Julia Lawall2, Jean-Pierre Lozi2

1Charles University, 2Inria Paris



2

Synchronization 
bottlenecks​

Multithreaded
applications face 

performance issues 
due to 

synchronization
causing delays and 

inefficiencies.​

Limitations of 
traditional 
profiling

Conventional tools 
focus on function or 

hardware slowdowns 
but miss inter-thread 

dependencies
impacting 

performance.​

Challenges of 
busy-waiting

Busy-waiting
threads spin in 

userspace, hiding
actual wait times as 

continuous execution 
in traces.​

Full picture 
visualization

Tapestry visualizes 
blocking and busy-

waiting
dependencies 

together, revealing 
deeper insights into 

multithreaded 
performance.​

Motivation



3

Synchronization 
bottlenecks​

Multithreaded
applications face 

performance issues 
due to 

synchronization
causing delays and 

inefficiencies.​

Limitations of 
traditional 
profiling

Conventional tools 
focus on function or 

hardware slowdowns 
but miss inter-thread 

dependencies
impacting 

performance.​

Challenges of 
busy-waiting

Busy-waiting
threads spin in 

userspace, hiding
actual wait times as 

continuous execution 
in traces.​

Full picture 
visualization

Tapestry visualizes 
blocking and busy-

waiting
dependencies 

together, revealing 
deeper insights into 

multithreaded 
performance.​

Motivation



4

Synchronization 
bottlenecks​

Multithreaded
applications face 

performance issues 
due to 

synchronization
causing delays and 

inefficiencies.​

Limitations of 
traditional 
profiling

Conventional tools 
focus on function or 

hardware slowdowns 
but miss inter-thread 

dependencies
impacting 

performance.​

Challenges of 
busy-waiting

Busy-waiting
threads spin in 

userspace, hiding
actual wait times as 

continuous execution 
in traces.​

Full picture 
visualization

Tapestry visualizes 
blocking and busy-

waiting
dependencies 

together, revealing 
deeper insights into 

multithreaded 
performance.​

Motivation



5

Synchronization 
bottlenecks​

Multithreaded
applications face 

performance issues 
due to 

synchronization
causing delays and 

inefficiencies.​

Limitations of 
traditional 
profiling

Conventional tools 
focus on function or 

hardware slowdowns 
but miss inter-thread 

dependencies
impacting 

performance.​

Challenges of 
busy-waiting

Busy-waiting
threads spin in 

userspace, hiding
actual wait times as 

continuous execution 
in traces.​

Full picture 
visualization

Tapestry visualizes 
blocking and busy-

waiting
dependencies 

together, revealing 
deeper insights into 

multithreaded 
performance.​

Motivation



6

Synchronization 
bottlenecks​

Multithreaded
applications face 

performance issues 
due to 

synchronization
causing delays and 

inefficiencies.​

Limitations of 
traditional 
profiling

Conventional tools 
focus on function or 

hardware slowdowns 
but miss inter-thread 

dependencies
impacting 

performance.​

Challenges of 
busy-waiting

Busy-waiting
threads spin in 

userspace, hiding
actual wait times as 

continuous execution 
in traces.​

Full picture 
visualization

Tapestry visualizes 
blocking and busy-

waiting
dependencies 

together, revealing 
deeper insights into 

multithreaded 
performance.​

Motivation



Synchronization

Busy-waiting examples

7

Blocking example

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;



Synchronization

Busy-waiting examples

8

Blocking example

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

`

Wait-for Dependency



Synchronization

Busy-waiting examples

9

Blocking example

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

`

Wait-for Dependency

How to unify the concept of 

dependencies for synchronization? 



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

10

Blocking example

Identify common patterns

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

11

Blocking example

The shared variable memory address

A dependency triple: 

<addr, ???, ???>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

12

Blocking example

A comparison operator

A dependency triple: 

<addr, ⊳⊲, ???>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

13

Blocking example

A constant value to compared against

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

14

Blocking example

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
<barrier_end, ==, true>

<addr, ==, val>

<lock, ==, 0>

<cur_tkt, ==, 0>



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

15

Blocking example

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
<barrier_end, ==, true>

<lock, ==, 0>

<addr, ==, val>
How to capture ordinary inter-thread wait-

for dependencies? 

<cur_tkt, ==, 0>



Ordinary Inter-thread Wait-for Dependencies

Busy-waiting examples

16

Blocking example

A dependency triple: 

<addr, ⊳⊲, val>

futex(*addr, WAIT, val, ...)
/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != true) 
PAUSE;

else *barrier_end = true;

/* Simple lock */
while (atomic_test_and_set(lock, 0, 1)

!= 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;

blocks if the futex word 

equals to the supplied val
<barrier_end, ==, true>

<lock, ==, 0>

<addr, ==, val>

Tapestry

<cur_tkt, ==, 0>



Overview

A Linux tracing framework

• A pipeline: Analyzer → Tracer → Viewer

Captures blocking and busy-waiting dependencies

Combines hardware watchpoints with 

software breakpoints

Critical path

Running

Dependency

Spinning

17



Overview

A Linux tracing framework

• A pipeline: Analyzer → Tracer → Viewer

Captures blocking and busy-waiting dependencies

Combines hardware watchpoints with 

software breakpoints

Blocking captured by trace-cmd via futex

syscalls

Critical path

Running

Dependency

Spinning

18



Overview

A Linux tracing framework

• A pipeline: Analyzer → Tracer → Viewer

Captures blocking and busy-waiting dependencies

Combines hardware watchpoints with 

software breakpoints

How to capture busy-waiting?

Critical path

Running

Dependency

Spinning

19



Architecture: Analyzer→ Tracer → Viewer

Finding all busy-wait loops in binaries

Heuristic similar to one proposed by 

Jannesari & Tichy, IPDPS 2010

• The loop exit condition depends on memory 

load

• The conditions’ value is not changed by the 

loop body

20

/* Barrier */
if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;
else *barrier_end = 1;

/* Simple lock */
while (atomic_test_and_set(

lock, 0, 1) != 0)
PAUSE;

/* Ticket lock */
tkt = atomic_inc(max_tkt);
while (*cur_tkt < tkt) PAUSE;



Architecture: Analyzer → Tracer→ Viewer

Capturing busy-waiting synchronization

a) Capture begin and end of busy-wait loop

b) Capture dependency

21

if (atomic_inc(thr_count) < n_thr) {

while (*barrier_end != 0) PAUSE;

} else {

*barrier_end = 1;

}

begin

end

dependency



Capturing Busy-Waiting Synchronization

a) Capture begin and end of busy-wait loop

Statically patch the beginning and the end of 

each busy-wait loop to store a tracepoint

22

while (*barrier_end != 0) PAUSE;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop



Capturing Busy-Waiting Synchronization

a) Capture begin and end of busy-wait loop

Statically patch the beginning and the end of 

each busy-wait loop to store a tracepoint

23

while (*barrier_end != 0) PAUSE;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

call store_time_begin

store_time_begin(spinId);

call store_time_end

store_time_end(spinId);



Capturing Busy-Waiting Synchronization

b) Capturing dependency

Spin-variable (dependency endpoint) 

is found using static analysis

How to find dependency store?

24

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Spin-variable



Capturing Busy-Waiting Synchronization

b) Capturing dependency

How to find dependency store?

25

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Solution: Use write watchpoints

(as in debuggers)



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

(ii) When the watchpoint is triggered:

• Store the dependency

26

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

call set_watchpoint(%rax)

Spin-variable



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

27

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

call set_watchpoint(%rax)

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Problem: limited number of watchpoints
E.g., four on x86



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

28

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

call set_watchpoint(%rax)

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Solution: dynamically replace watchpoints 

with software breakpoints



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

29

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

call set_watchpoint(%rax)

spinloop:

pause

mov (%rax), rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

Solution: dynamically replace watchpoints 

with software breakpoints

memory addresses

code addresses



Capturing Busy-Waiting Synchronization

b) Capturing dependency

(i) Statically inject code that sets a write 

watchpoint on the dependency variable 

address

(ii) When the watchpoint is triggered:

1. Store the dependency

2. Disable the watchpoint

3. Set a breakpoint on the store code 

address (%rip) for future dependencies

30

if (atomic_inc(thr_count) < n_thr)

while (*barrier_end != 0) PAUSE;

else

*barrier_end = 1;

spinloop:

pause

mov (%rax), %rbx

cmp %rbx, %rcx

jne spinloop

...

...

mov %rdx, (%rdi)

on_trigger(watch_id): 

store_dep(<%rdx,==,0>);

disable_watch(watch_id);

set_break(%rip,&store_dep);

call set_watchpoint(%rax)



Architecture: Analyzer → Tracer → Viewer

Post-processing of raw traces and visualization

• Connects events with the same dependency

TA → TB: A thread TA resolves a dependency TB

was waiting on

• Forms a dependency graph

Critical path is the longest path in the 

dependency graph

31

Critical path

Running

Dependency

Spinning



32

Observing NUMA Effect of Spinning Barrier

NAS/BT: 64 threads

NUMA: 2x32-cores



33

Observing NUMA Effect of Spinning Barrier

NAS/BT: 64 threads

NUMA: 2x32-cores

Node 0

Node 1

Spinning

Dependency store

Critical path



34

Diagnosing Pathological Busy-Waiting

Running two NAS/LU in parallel

OpenMP set to blocking

Why is the parallel execution of 

LU so slow?



35

Diagnosing Pathological Busy-Waiting

Critical path ~ 

dependency chain

RunningSpinning

Dependency

Resolving store

Thread not 

running

Thread starts 

running and lets 

another thread 

progress



36

Faster Busy-Waiting in VMs vs. Bare Metal

Running two NAS/LU in parallel: 

• BM: instances run on bare metal

• VM: each instance runs in a separate VM

OpenMP set to default

• Busy-waiting for a fixed number of 

iterations, then blocking

Why is running in VM faster 

than on bare metal? 

LU

36x

LU

36x

36x

LU

36x

VM1

36x

LU

36x

VM2

36x

36x



37

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

Critical pathRunningSpinning Dependency store Blocking



38

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

Critical pathRunningSpinning Dependency store Blocking

Frequent blocking →

Threads frequently exhaust 

their busy-waiting iteration 

budget, i.e., they must 

spin faster

No blocking →

Threads remain entirely 

in the busy-waiting phase



39

Faster Busy-Waiting in VMs vs. Bare Metal

Bare metal VM

Critical pathRunningSpinning Dependency store Blocking

Frequent blocking →

Threads frequently exhaust 

their busy-waiting iteration 

budget, i.e., they must 

spin faster

No blocking →

Threads remain entirely 

in the busy-waiting phase

How could threads in VM spin faster?



40

Pause-Loop Exiting (PLE)

A hardware feature of Intel VMX

PLE triggers VM exits for spinloops to 

help the hypervisor mitigate guest-kernel 

lock holder/waiter preemption issue

“PLE VM-execution control is ignored in 

userspace” [Intel manual, §36.7.3]

// userland test:

for (i=0; i < 109; i++) PAUSE;



41

Pause-Loop Exiting (PLE)

A hardware feature of Intel VMX

PLE triggers VM exits for spinloops to 

help the hypervisor mitigate guest-kernel 

lock holder/waiter preemption issue

“PLE VM-execution control is ignored in 

userspace” [Intel manual, §36.7.3]

And yet, with PLE enabled, user 

PAUSE instructions are not even 

retired on Skylake and Cascade Lake 

machines

// userland test:

for (i=0; i < 109; i++) PAUSE;



42

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization



43

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

• Combining the use of hardware watchpoints and software breakpoints



44

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

• Combining the use of hardware watchpoints and software breakpoints

Investigated three anomalies using Tapestry

• NUMA effect on spin-barriers

• Pathological busy-waiting

• Faster busy-waiting in VM vs. bare metal

• Found undocumented hardware effect on some Intel machines



45

Conclusion

A dependency model that unifies the concept of inter-thread wait-for dependencies for 

blocking and busy-waiting synchronization

Tapestry: A tracing framework to observe wait-for dependencies

• Combining the use of hardware watchpoints and software breakpoints

Investigated three anomalies using Tapestry

• NUMA effect on spin-barriers

• Pathological busy-waiting

• Faster busy-waiting in VM vs. bare metal

• Found undocumented hardware effect on some Intel machines

Thank you!


	Default Section
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Synchronization
	Slide 8: Synchronization
	Slide 9: Synchronization
	Slide 10: Ordinary Inter-thread Wait-for Dependencies
	Slide 11: Ordinary Inter-thread Wait-for Dependencies
	Slide 12: Ordinary Inter-thread Wait-for Dependencies
	Slide 13: Ordinary Inter-thread Wait-for Dependencies
	Slide 14: Ordinary Inter-thread Wait-for Dependencies
	Slide 15: Ordinary Inter-thread Wait-for Dependencies
	Slide 16: Ordinary Inter-thread Wait-for Dependencies
	Slide 17: Overview
	Slide 18: Overview
	Slide 19: Overview
	Slide 20: Architecture: Analyzer  Tracer  Viewer
	Slide 21: Architecture: Analyzer  Tracer  Viewer
	Slide 22: Capturing Busy-Waiting Synchronization
	Slide 23: Capturing Busy-Waiting Synchronization
	Slide 24: Capturing Busy-Waiting Synchronization
	Slide 25: Capturing Busy-Waiting Synchronization
	Slide 26: Capturing Busy-Waiting Synchronization
	Slide 27: Capturing Busy-Waiting Synchronization
	Slide 28: Capturing Busy-Waiting Synchronization
	Slide 29: Capturing Busy-Waiting Synchronization
	Slide 30: Capturing Busy-Waiting Synchronization
	Slide 31: Architecture: Analyzer  Tracer  Viewer
	Slide 32: Observing NUMA Effect of Spinning Barrier
	Slide 33: Observing NUMA Effect of Spinning Barrier
	Slide 34: Diagnosing Pathological Busy-Waiting
	Slide 35: Diagnosing Pathological Busy-Waiting
	Slide 36: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 37: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 38: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 39: Faster Busy-Waiting in VMs vs. Bare Metal
	Slide 40: Pause-Loop Exiting (PLE)
	Slide 41: Pause-Loop Exiting (PLE)
	Slide 42: Conclusion
	Slide 43: Conclusion
	Slide 44: Conclusion
	Slide 45: Conclusion


