Monolift

Automating Distribution With the Tools You Have at Home
PLOS 2025

Tim Goodwin, Esteban Ramos, Lindsey Kuper, Andi Quinn

arons.. UNIVERSITY OF CALIFORNIA

g "Q_Q\ iz S -,
3 AQ ;; 2\
SR =N\ Y
2 AEEE AN
PN S@R)0):
SRR 2
R ETNS A
N\ }»..,. ‘ c
.,-."' -’868. ...".c

Distributed systems in 2025

Are they any easier?

* Cloud computing makes scalability easy

* Containers and orchestration platforms (e.g. Kubernetes)
e Efficient RPC frameworks and data formats

e Autoscalers and load balancers

* Conventional wisdom: split application into smaller pieces, deploy independently

The standard approach

The standard approach

The standard approach

User Service

— % Follows Follows Service

| RPC

Post Service

i Microservices
Monolith

The standard approach

User Service

R

PC
% FQ| |OWS Follows Service
PC

|R

Challenge 1. Labor-intensive refactors
% Posts Post Service

Monolith Microservices

The standard approach

User Service

|4

)
i’
B

bC
% FO| |OWS Follows Service
PC

%

Challenge 1. Labor-intensive refactors
Challenge 2. Unpredictable outcomes % Posts Post Service

Monolith Microservices

The standard approach

User Service

Follows Service

Challenge 1. Labor-intensive refactors

Post Service

Challenge 2: Unpredictable outcomes

Monolith Core issue: microservices couple Microservices
development model to deployment model

Decouple development from deployment
with higher-level abstractions

Decoupling Development from Deployment

Multitier Programming

Multitier progrom
 Emerged in early 00’s to simplify web development @

* Write distributed application as a single program, et ¢ ‘l
compiler generates distributed system Wititier compiler

 Examples: / \

H : (OO,) Client b nary Server Einart/
e Hop.js (00’s [—_——]
‘ Browser l ' JVM)

 Ur/Web (2015)
e Scalaloci (2018)

10

Distributed Component Frameworks

* EXxpress application logic in terms of
predefined framework components

e Separate runtime handles how components
are deployed and integrated

 Examples:
 Microsoft DCOM (90s)
 Akka / Orleans (2010s)

 Google’s Service Weaver (2023)

11

Application

component A
component B
component C

Decoupling Development from Deployment

Machine 1

A /OC

Y
B

Rec/ \ReC

C

C

Machine 2

Machine 3

From Ghemawat et al. “Towards Modern Development of Cloud Applications”

The problem: “all or nothing” solutions

Service Weaver

& Important Announcement

Service Weaver began as an exploratory initiative to understand the challenges of developing, deploying, and maintaining distributed
applications. We were excited by the strong interest from the developer community, which led us to open-source the project.

We greatly appreciate the continued advocacy and support of the Service Weaver community. However, we realized that it was hard for
users to adopt Service Weaver directly since it required rewriting large parts of existing applications. Therefore, Service Weaver did not
see much direct use, and effective December 5, 2024, we will transition Service Weaver into maintenance mode. After this date, for
the next 6 months, we will only push critical commits to the GitHub repository, respond to critical issues, merge critical pull requests,
and patch new releases. We recommend that users fork the repository and report any issues preventing them from maintaining a
stable version of the code.

On June 6, 2025, we plan to permanently freeze and archive the GitHub repository, after which no new commits or releases will be
made.

Service Weaver is a programming framework for writing, deploying, and managing distributed applications. You can run, test, and debug a
Service Weaver application locally on your machine, and then deploy it to the cloud with a single command.

$ go run . # Run locally. 5
$ weaver gke deploy weaver.toml # Run in the cloud.

13

Enter Monolift

Vision: simplify distribution with a “pay-as-you-go” programming model
* Prioritize incremental adoption

 Minimize code changes

Key idea: treat distribution as a compiler pass for general purpose languages
* use the tools we already have at home!

14

The Key ldea

functions <~> serverless tasks

classes and Iinterfaces <~> microservices

Machine 1 Machine 1
- - [API Layer] [API Layer
Monolift Design T (G
11 (SIS
Core abstraction is the Lift B W S PC
RPC
* (Code segment that can run locally or \ / \ “\
Machine 2 Machine 3

remotely

f Annotations
A B

» (Created by annotating source code

 Compiler extracts annotated code into

_ Original Deployment Lifted Deployment
standalone deployment artifacts

e Runtime monitor determines how to
invoke lifts

Mental model: lifts offload computation onto additional resources as needed

16

USIng MO“Ollft func hashPassword(pw string) (string, error) {

// resource intensive hash algorithm

// to guard against brute-force attacks
key, err := scrypt.Key(pw, salt)

return key, err

}

type usrMgr struct {
db database.Client

func (u *usrMgr) Register(name, pw string) error {
1f pwHash, err := hashPassword(pw); err != nil {
return err

}

return u.db.Insert("users"”, name, pwHash)

17

//monolift:offload

USIng MO“Ollft func hashPassword(pw string) (string, error) {

// resource intensive hash algorithm

e Add annotations as comments // to guard against brute-force attacks
key, err := scrypt.Key(pw, salt)
return key, err

}

type usrMgr struct {
db database.Client

}

func (u *usrMgr) Register(name, pw string) error {
1f pwHash, err := hashPassword(pw); err != nil {
return err

}

return u.db.Insert("users"”, name, pwHash)

18

//monolift:offload metric=CPU threshold=75%

USIng MO“Ollft func hashPassword(pw string) (string, error) {

// resource intensive hash algorithm

e Add annotations as comments // to guard against brute-force attacks

. Cy . o . key, err := scrypt.Ke , salt

» Specify distribution policies via Y ypt.Key(pu .
return key, err

delegate expressions)

type usrMgr struct {
db database.Client

}

func (u *usrMgr) Register(name, pw string) error {
1f pwHash, err := hashPassword(pw); err != nil {
return err

}

return u.db.Insert("users"”, name, pwHash)

19

Using Monolift

Add annotations as comments

Specify distribution policies via
delegate expressions

Compile and deploy
Adjust and iterate if needed

//monolift:offload metric=CPU threshold=75%
func hashPassword(pw string) (string, error) {

}

// resource intensive hash algorithm

// to guard against brute-force attacks
key, err := scrypt.Key(pw, salt)

return key, err

type usrMgr struct {

}

db database.Client

func (u *usrMgr) Register(name, pw string) error {

20

1f pwHash, err := hashPassword(pw); err != nil {
return err

}

return u.db.Insert("users"”, name, pwHash)

//monolift:offload metric=CPU threshold=75%
func hashPassword(pw string) (string, error) {
// resource-intensive hash algorithm <- Original
// to guard against brute-force attacks
key, err := scrypt.Key(pw, salt)
return key, err

// Code generated by monolift. DO NOT EDIT.
func hashPasswordDelegate(pw string) (string, error) {
shouldDelegate := monolift.EvalThreshold("CPU", 75)
if shouldDelegate {
: arams := map[string]string{"password"”: pw}
mpiled -> P
Co P ed return monolift.CreateTask("hashPassword"”, params)

}

return hashPassword(pw)

21

Monolift Prototype

* Implemented in Go, supports Go applications

* [reats Kubernetes as a compiler target

* Delegate expressions as signal/threshold policies
 Supports CPU + memory consumption, invocation rates

* Runtime monitor embedded as background routine

* polls cgroup interface for resource consumption

22

Challenges

® How do you know what code to Iift?
* Future work: profile guided optimization, visualization tools

23

Challenges

® How do you know what code to extract?
* Future work: profile guided optimization, visualization tools

® Retrofitting distribution vs. designing for it
* Monolift leverages modularity, can’t save your spaghetti code
* Future work: automated refactors or compiler-aided advice

24

Challenges

® How do you know what code to Iift?
* Future work: profile guided optimization, visualization tools
® Retrofitting distribution vs. designing for it
* Monolift leverages modularity, can’t save your spaghetti code
* Future work: automated refactors or compiler-aided advice
® How to reconcile individual delegate expressions into a global policy?
e Future work: formulate transition models, ML-based autoscaling

25

Conclusion

 Monolift automatically refactors monolithic applications into distributed
architectures to unlock cloud scalabillity

* Supports existing code by handling distribution as a compiler pass instead of
a new abstraction

* Refactors guided by a lightweight annotation language that supports dynamic
distribution policies, managed by embedded runtime

 Enables rapid and low-commitment exploration of design space

O https://github.com/tgoodwin/monolift

26

