
Monolift
Automating Distribution With the Tools You Have at Home

Tim Goodwin, Esteban Ramos, Lindsey Kuper, Andi Quinn

PLOS 2025



Distributed systems in 2025
Are they any easier?

• Cloud computing makes scalability easy 

• Containers and orchestration platforms (e.g. Kubernetes)


• Efficient RPC frameworks and data formats


• Autoscalers and load balancers


• Conventional wisdom: split application into smaller pieces, deploy independently



3

Users

Follows

Posts

Monolith

The standard approach



4

Users

Follows

Posts

Monolith

The standard approach



5

Users

Follows

Posts

Monolith

Users

Follows

Posts

Microservices

User Service

Follows Service

Post Service

RPC

RPC

The standard approach



6

Users

Follows

Posts

Monolith

Users

Follows

Posts

Microservices

User Service

Follows Service

Post Service

RPC

RPC

Challenge 1: Labor-intensive refactors

The standard approach



7

Users

Follows

Posts

Monolith

Users

Follows

Posts

Microservices

User Service

Follows Service

Post Service

RPC

RPC

Challenge 1: Labor-intensive refactors
Challenge 2: Unpredictable outcomes

The standard approach



8

Users

Follows

Posts

Monolith

Users

Follows

Posts

Microservices

User Service

Follows Service

Post Service

RPC

RPC

Core issue: microservices couple 
development model to deployment model

Challenge 1: Labor-intensive refactors
Challenge 2: Unpredictable outcomes

The standard approach



Decouple development from deployment 
with higher-level abstractions

9



Decoupling Development from Deployment
Multitier Programming

• Emerged in early 00’s to simplify web development


• Write distributed application as a single program, 
compiler generates distributed system


• Examples:


• Hop.js (00’s)


• Ur/Web (2015)


• ScalaLoci (2018)

10



Decoupling Development from Deployment
Distributed Component Frameworks

• Express application logic in terms of 
predefined framework components


• Separate runtime handles how components 
are deployed and integrated


• Examples:


• Microsoft DCOM (90s)


• Akka / Orleans (2010s)


• Google’s Service Weaver (2023)
11

From Ghemawat et al. “Towards Modern Development of Cloud Applications”



The problem: “all or nothing” solutions

12



13



Enter Monolift

Vision: simplify distribution with a “pay-as-you-go” programming model


• Prioritize incremental adoption


• Minimize code changes

Key idea: treat distribution as a compiler pass for general purpose languages

• use the tools we already have at home! 

14



functions <~> serverless tasks 

classes and interfaces <~> microservices

15

The Key Idea



API Layer

A B C

Machine 1

API Layer

C

Machine 1

client

monitor

A client B

A

Machine 2

B

Machine 3

RPC RPC

monitor

Original Deployment Lifted Deployment

Annotations

Monolift Design
Core abstraction is the Lift 
• Code segment that can run locally or 

remotely

• Created by annotating source code

• Compiler extracts annotated code into 

standalone deployment artifacts

• Runtime monitor determines how to 

invoke lifts

16

Mental model: lifts offload computation onto additional resources as needed



Using Monolift

17



Using Monolift
• Add annotations as comments

18



Using Monolift
• Add annotations as comments

• Specify distribution policies via 

delegate expressions

19



Using Monolift
• Add annotations as comments

• Specify distribution policies via 

delegate expressions 
• Compile and deploy 
• Adjust and iterate if needed

20



<- Original

21

Compiled ->



Monolift Prototype
• Implemented in Go, supports Go applications


• Treats Kubernetes as a compiler target


• Delegate expressions as signal/threshold policies


• Supports CPU + memory consumption, invocation rates


• Runtime monitor embedded as background routine


• polls cgroup interface for resource consumption

22



Challenges
• How do you know what code to lift? 
• Future work: profile guided optimization, visualization tools

23



Challenges
• How do you know what code to extract? 
• Future work: profile guided optimization, visualization tools


• Retrofitting distribution vs. designing for it 
• Monolift leverages modularity, can’t save your spaghetti code

• Future work: automated refactors or compiler-aided advice

24



Challenges
• How do you know what code to lift? 
• Future work: profile guided optimization, visualization tools


• Retrofitting distribution vs. designing for it 
• Monolift leverages modularity, can’t save your spaghetti code

• Future work: automated refactors or compiler-aided advice


• How to reconcile individual delegate expressions into a global policy? 
• Future work: formulate transition models, ML-based autoscaling

25



Conclusion
• Monolift automatically refactors monolithic applications into distributed 

architectures to unlock cloud scalability


• Supports existing code by handling distribution as a compiler pass instead of 
a new abstraction


• Refactors guided by a lightweight annotation language that supports dynamic 
distribution policies, managed by embedded runtime


• Enables rapid and low-commitment exploration of design space

26

https://github.com/tgoodwin/monolift


