barkhauseninstitut.org -I barkhausen
institut

Applying Modern Verification Techniques to a Root-of-
Trust Bootloader

Nicholas Gordon
Barkhausen Institut

Carsten Weinhold
Barkhausen Institut

Introduction

Formal Verification: The Next Frontier in Trusted

Computing?

* Trusted Computing paradigm has
“settled”

* Systems still insecure! Hardware

* Software has bugs. Privilege
Separation

Separation Kernel
(also trusted)

* Solution: Verification for security, robustness

* This talk: half experience report, half call-to-action

2

Recent Advances and Hype

* Software language changes give new opportunities: Rust

Interest over time @

@ .
JL B AA
Average Nov 1,2018

Jan 1, 2004 Jun 1, 2011

® formal verification ® rust programming ... rust verification
Search term Search term Search term

Recent Advances and Hype

* Lots of energy in Rust in particular
* Kani, Prusti, Creusot, Verus, ...

* Elsewhere, too:

* Rocqg/Isabelle/Lean + automation
* Prover-language embeddings (e.g. RefinedRust)

* Opportunity? Maybe have another look

Motivation/Problem
System Software and Verification: A Poor Match?

* Hurdles:

* Heroic"” efforts: SelL4, CertiKOS
* Design limitations

* Tool use difficulties

* Applicable to existing software?

Idea/Approach
Test-Drive a Verification Tool

* There have been developments since the milestone works
* SelL4: 2009
* CertiKOS: 2016

* Modern, Rust-based framework (follow the hype)
* Which one to pick?

Idea/Approach
Tool Use Difficulties

* What kind of tool to use?
* SMT Solvers (Verus, Kani)
* Foundational tools (Rocq, Isabelle)
* Other Barkhausen talk to learn more

Idea/Approach
Verus

* Verus: expressiveness,
accessibility, syntax

* SMT-based solver
* Encodes properties as Hoare

triples (pre- and post-
conditions)

#[inline(always)]
#[cfg(target_arch = "riscv64")]
unsafe fn prepare_switch<Data: CtxData>(

)_

,-JL.""

ctx: LayerCtx<Data>,
heke=be: *mut LayerCtx<Data>,

acked<&mut LayerCtx<Data>>>,

eclear: *const ug,
~1s m Usize)

Wiere_to@.addr == crate: :MEM_OFFSET,

eclear@.addr != 0,

eclear@.addr >= where_to@.addr,

old(where_to_perm).ptr() == where_to,

aldfwhere_to_perm).is_uninit(),

ensures
=0,

enty >= eclear as usize,
e(==
tx),

:krange_cleared(crate: :MEM_OFFSET as int,

eclear@.addr as int),

Idea/Approach
Why re-write? Retrofit!

* Efforts have been (mostly) from-scratch

* Why is this a problem?
* Re-writing “with verification in mind” not very practical.

* Retrofit something instead?

Idea/Approach
What to retrofit?

* Conventional kernels way too big
* Too much complexity
* Tool suitability unclear (sunk cost fallacy)
° What to prove? | Linux kernel diagram

functions |~ e | ytm | Imultt skin gI | memory | I trg I | twork gl

* Novelty? (vs. e.q. seL4)

user space char memory flles and
interfaces - Processes) _“access dire t rie:

virtual input proc & sysfs Tk Virtual Virtual protocol
subsystems subsystem file systems memory File System families

MMU, RAM

10

Idea/Approach
Ideal target: Bootloader ?

* Bootloader
* Low-level, low-abstraction
* Good exercise of tool's ability to handle unsafe code,
interact with hardware

1

Implementation
Verus + M3 Bootloader

* M3 bootloader
* Provides a root of trust (DICE protocol)
* In use for other research
* Four boot stages

o]+]

CDI, CDI, CDI,

12

Implementation
Verus + M3 Bootloader

What to prove?

* DICE: t stage,
measure next stage m(1) m(2)

combine with your secret,
| Wi you 0 r 1 r 2

hand bundle to next stage

* Secure inter-stage erasure

property: ups—* cbl,—* CDI,

* Data ownership, raw _ .
memory, context switching, CDin+1 = kdf(m(n+1), CDIn)

assembly

* Straightforward to express

13

Implementation
What's the spec?

* How does the spec look?

pub uninterp spec fn addr_cleared(a: int) -> bool;

pub open spec fn range_cleared(start: int, end: int) -> bool {
forall|i: int| start <= i < end ==> #[trigger] addr_cleared(i)

3
pub open spec fn wf(layer : Bootstage) —> bool {

range_cleared(layer.begin, layer.end)

}

14

Implementation
Verus + M3 Bootloader

* Implemented directly into existing Rust codebase

* Integrated with M*s semi-custom build system (!)
* Stubbed out ,non-critical” code
* Unrelated application code
* Library code

* Reorganization was necessary to cooperate with Verus
* Still research software, after all

15

Evaluation
Proof-To-Code Ratio, Performance, Developer
Experience

* What did we prove? Assumptions/limitations:
* Inherit from Verus (Rust semantic assumptions)
* Trust M3, Verus, and then Rust libraries (~90k LOC)
* Trust hardware definitions, trust linker symbols

fn main() - ! {
<pootloader stuff>

assert(rot::range_cleared(rot::MEM_OFFSET as int,
rot::get_eclear() as 1int));
loop { }

} 16

Evaluation
Proof-to-Code Ratio

* Proof to code ratio was very low: 0.56 (proof LOC to source

LOCQ)

* Bootloader is simple

* Selected property was also very simple

* Matichuk shows quadratic growth of proof with spec

~ Appicaton
LoC Without Verus 725 607 1,332

LoC With Verus 899 1,175 2,074

I o 24 (1747250094 055

17

Evaluation
Performance

* Performance impact negligible

. Strength of Ownership Stage | Orig. | With Verus | Diff. | Percent
types/,,ghost code” Concept Brom 1.8 1.5 -0.3 | -16.78%
Blau | 52,977 52,943 34 | -0.06%

Rosa | 72,205 76,958 4,753 | 6.58%

* Binary size similarly unaffected
* Size decreased in some cases due to compiler optimization
Stage | Orig. | With Verus
Brom | 30K 30K
Blau | 58K 42K
Rosa | 109K 110K

18

Evaluation
Developer Experience

* Though very popular, Verus still research software
* “Quality of life”, usability improvements
* More complete low-level memory support
* Broader/more complete support for Rust constructs

* How long did it take to get comfortable?
* Total effort: ~3 months
e “Acclimitization time"” of ~2 months

* Pretty reasonable

19

Discussion
Conclusion, Future Directions, Lessons Learned

* New avenues opening up for verified system software
* Practical step in the development cycle?
* I'm a kernel guy, not a verification guy

* Limitations: small scale, simple property

* Future questions:
* Applicability at scale?

* Hardware model? Register contents, interruptibility, etc.

* Other tools?

20

Thank you
Questions and Feedback

References:

[1] https://makelinux.github.io/kernel/diagram/

[2] RefinedRust: https://plv.mpi-sws.org/refinedrust/
[3] Verus code: hitps://github.com/verus-lang/verus

21

Backup Slides

* Why not Kani?
* Bounded model checkers are useful, too!
* Also accessible to systems programmers
* Different workflow compared to contracts (test-based)

22

Backup Slides

* How big is the bootloader?

*~750 LOC in application

* ~600 LOC in specific libraries

* Depends on some fraction of M3library
* ~29k LOC

23

Backup Slides
* What were those Verus hangups?

* Before:
impl CtxData for BromCtx {

const MAGIC: Magic = encode_magic(b"BromCtx", 1);

}
» After:;

impl CtxData for BromCtx {
fn magic() -> Magic {
Ox01000001

}
//const MAGIC: Magic = encode_magic(b"BromCtx", 1);

24

