
barkhauseninstitut.org

Applying Modern Verification Techniques to a Root-of-
Trust Bootloader

Nicholas Gordon
Barkhausen Institut

Carsten Weinhold
Barkhausen Institut

Introduction
Formal Verification: The Next Frontier in Trusted
Computing?

2

● Trusted Computing paradigm has
“settled“

● Systems still insecure!
● Software has bugs.

● Solution: Verification for security, robustness

● This talk: half experience report, half call-to-action

Recent Advances and Hype

3

● Software language changes give new opportunities: Rust

Recent Advances and Hype

4

● Lots of energy in Rust in particular
● Kani, Prusti, Creusot, Verus, ...

● Elsewhere, too:
● Rocq/Isabelle/Lean + automation
● Prover-language embeddings (e.g. RefinedRust)

● Opportunity? Maybe have another look

Motivation/Problem
System Software and Verification: A Poor Match?

5

● Hurdles:

● „Heroic“ efforts: SeL4, CertiKOS
● Design limitations

● Tool use difficulties

● Applicable to existing software?

Idea/Approach
Test-Drive a Verification Tool

6

● There have been developments since the milestone works
● SeL4: 2009
● CertiKOS: 2016

● Modern, Rust-based framework (follow the hype)
● Which one to pick?

Idea/Approach
Tool Use Difficulties

7

● What kind of tool to use?
● SMT Solvers (Verus, Kani)
● Foundational tools (Rocq, Isabelle)

● Other Barkhausen talk to learn more

Idea/Approach
Verus

8

● Verus: expressiveness,
accessibility, syntax

● SMT-based solver

● Encodes properties as Hoare
triples (pre- and post-
conditions)

Idea/Approach
Why re-write? Retrofit!

9

● Efforts have been (mostly) from-scratch

● Why is this a problem?
● Re-writing “with verification in mind” not very practical.

● Retrofit something instead?

Idea/Approach
What to retrofit?

10

● Conventional kernels way too big
● Too much complexity
● Tool suitability unclear (sunk cost fallacy)
● What to prove?
● Novelty? (vs. e.g. seL4)

[1]

Idea/Approach
Ideal target: Bootloader ?

11

● Bootloader
● Low-level, low-abstraction
● Good exercise of tool’s ability to handle unsafe code,

interact with hardware

Implementation
Verus + M3 Bootloader

12

● M3 bootloader
● Provides a root of trust (DICE protocol)
● In use for other research
● Four boot stages

Implementation
Verus + M3 Bootloader

13

What to prove?
● DICE: measure next stage,

combine with your secret,
hand bundle to next stage

● Secure inter-stage erasure
property:
● Data ownership, raw

memory, context switching,
assembly

● Straightforward to express

Implementation
What’s the spec?

14

● How does the spec look?

Implementation
Verus + M3 Bootloader

15

● Implemented directly into existing Rust codebase
● Integrated with M3’s semi-custom build system (!)

● Stubbed out „non-critical“ code
● Unrelated application code
● Library code

● Reorganization was necessary to cooperate with Verus
● Still research software, after all

Evaluation
Proof-To-Code Ratio, Performance, Developer
Experience

16

● What did we prove? Assumptions/limitations:
● Inherit from Verus (Rust semantic assumptions)
● Trust M3, Verus, and then Rust libraries (~90k LOC)
● Trust hardware definitions, trust linker symbols

fn main() → ! {
...
<bootloader stuff>
...
assert(rot::range_cleared(rot::MEM_OFFSET as int,
 rot::get_eclear() as int));
loop { }

}

Evaluation
Proof-to-Code Ratio

17

● Proof to code ratio was very low: 0.56 (proof LOC to source
LOC)
● Bootloader is simple
● Selected property was also very simple
● Matichuk shows quadratic growth of proof with spec

Application Library Total

LoC Without Verus 725 607 1,332

LoC With Verus 899 1,175 2,074

Verus LoC 174 568 742

Ratio 0.24 (=174/725) 0.94 0.56

Evaluation
Performance

18

● Performance impact negligible
● Strength of ownership

types/”ghost code” concept

● Binary size similarly unaffected
● Size decreased in some cases due to compiler optimization

Evaluation
Developer Experience

19

● Though very popular, Verus still research software
● “Quality of life”, usability improvements
● More complete low-level memory support
● Broader/more complete support for Rust constructs

● How long did it take to get comfortable?
● Total effort: ~3 months
● “Acclimitization time” of ~2 months

● Pretty reasonable

Discussion
Conclusion, Future Directions, Lessons Learned

20

● New avenues opening up for verified system software
● Practical step in the development cycle?
● I’m a kernel guy, not a verification guy

● Limitations: small scale, simple property

● Future questions:
● Applicability at scale?
● Hardware model? Register contents, interruptibility, etc.
● Other tools?

Thank you
Questions and Feedback

21

References:
[1] https://makelinux.github.io/kernel/diagram/
[2] RefinedRust: https://plv.mpi-sws.org/refinedrust/
[3] Verus code: https://github.com/verus-lang/verus

Backup Slides

22

● Why not Kani?
● Bounded model checkers are useful, too!
● Also accessible to systems programmers
● Different workflow compared to contracts (test-based)

Backup Slides

23

● How big is the bootloader?
● ~750 LOC in application
● ~600 LOC in specific libraries
● Depends on some fraction of M3 library

● ~29k LOC

Backup Slides

24

● What were those Verus hangups?
● Before:

● After:

