
Modal Verification Patterns for Software Systems
Chapter 1:

A Tale of Two Concepts: Resource and its Context

Ismail Kuru and Colin S. Gordon
Department of Computer Science

Drexel University

October 13, 2025

1 / 24

Part I

Systems View

2 / 24

The Essentials in Systems Programming

1 pointer va︸ ︷︷ ︸
a virtual reference

:=

a supposedly allocated physical resource︷ ︸︸ ︷
malloc (size)

3 / 24

Memory Location Virtualization

V P

≂

vai

vai+1

van

pai
pai+1

vam

Figure: Virtualization: The Deception of Memory Abundance

4 / 24

Memory Location Virtualization: Abstraction

An Address Space with Logical
Name γ

V P

≂
vai
vai+1

van

pai
pai+1

vam

γ

Figure: Address-Spaces: Named Containers for
Virtual Memory Mappings

A Program Named
γn

p o i n t e r va :=
ma l l o c (s i z e)

A Program Named
γm

p o i n t e r va :=
ma l l o c (s i z e)

• A program is abstracted as a
named address-space

• A container of virtual-to-physical
memory resource mappings

5 / 24

Address-Space Container of Virtual-to-Physical Mappings

cr3

va

pa

L4 L3 L2 L1

root

Figure: Depicting an Address-Space
with its Essential Aspects

The Current View of Memory

The register cr3 points to the current view of the
memory, i.e., the loaded address space in the memory

.

6 / 24

The Essentials in Systems Programming

1 FILE∗ fptr︸ ︷︷ ︸
a file handle

:=

{
a supposedly accesible data at somewhere in the computer

which makes its potential mode unknown : in memory or on disk or ...

}
︷ ︸︸ ︷
fopen(filename,mode);

7 / 24

File Page Virtualization

V P

≂

fhi

fhi+1

fhn

pai

pai+1

pam

Figure: Virtualization: The Deception of Disk-Page Abundance

8 / 24

A Global Disk-Page Tree

pagei
... pagen

...

FILE*
fh1

File
Cache

Page Tree

rt fh1

rt fh2

Super0 Super1root chunk
....

Disk

9 / 24

File Data Virtualization: Wait! Maybe a Bit More!

V P

≂

fhi

fhi+1

fhn

pai

pai+1

pam

Figure: Virtualization: The Deception of Disk-Page Abundance Parameterized under Some Consistency
Model

10 / 24

File Data Virtualization: Abstraction

A Disk-Page Tree with Logical
Name γn?

V P

≂
fhi
fhi+1

fhn

pai
pai+1

vam

γ

Figure: A Global Disk-Page Tree: Named
Containers for File-Page to Disk-Page
Mappings?

An Updated File in
the Named
Disk-Tree γn

FILE∗ fh1 :=
w r i t e (data)

An Read-Only
Access to a File in
the Named
Disk-Tree γn

FILE fh2 :=
read (data , s z)

• Could a global disk tree as a
container work for
virtual-to-physical disk resources?

• Maybe? But not always!

11 / 24

A Global File Page Tree with Multiple Views

Consistency models can impose
multi-mode-views on the disk
page tree

0 memStart

Advanced
installed

Advanced
logger

Advanced
Flush

Advanced
Commit

Installed
writes

Logged
writes

Being
logged

Unstable
writes

diskEnd nextDiskEnd memEnd

pagei
... pagen

...

FILE*
fh1

File
Cache

root

Page Tree

Journal

rt fh1

rt fh2

12 / 24

An Example for a Consistency Model: Journalling

• Indices uniquely
naming the consistent
pieces of disk and the
updates to be
inserted into the disk

• Certain pages of the
global tree are valid
under different views
to it

• Recovery, Atomicity
...

0 memStart

Advanced
by
installed

Advanced
by
logger

Advanced
by
Flush

Advanced
by
Commit

Installed
writes

Logged
writes

Writes
being
logged

Unstable
writes

diskEnd nextDiskEnd memEnd

Figure: Depicting Journalling Model

13 / 24

Another Example for a Consistency Model: Copy-On-Writes
Filesystems

• Updates are done on newly allocated resources

• Snapshots are collections of updates

• A uniquely identifying snapshotting identifier naming the consistent pieces of disk.

• Snapshot updates appear on the disk atomically: always have a consistent view of
the disk-tree

• Recovery, Atomicity

14 / 24

Part II

Logical View

15 / 24

Resource: Unital Element as a Fact Matters Most

{P} C {Q}
• What matters most inside P for for the program action C contingently?

• Well-known points-to assertion, e.g., virt ref 7→ mem page

16 / 24

A Virtual Memory Pointsto

• virt ref 7→ mem page

virt ref

mem page

L4 L3 L2 L1

root

@
H
er
e
?

cr3

17 / 24

A Disk Page Pointsto

• An expected points-to assertion, e.g., page ref 7→q page

0 memStart

Installed
writes

Logged
writes

Writes
logged

Unstable
writes

diskEnd nextDiskEnd memEnd

page i
... page n ...

FILE*
fh1

File
Cache

root

Page Tree

Journal

rt fh1

rt fh2

@Here ? @Here ? @Here ?@Here ? 18 / 24

@Here ?: Resource Context

• The habitat of a resource determining its scope of validity

19 / 24

Habitat of Virtual Memory Mappings

{[r1](vai 7→ pagei) ∗ vaj 7→ pagej}cr3 := r1{vai 7→ pagei ∗ [r2](vaj 7→ pagej)}

cr3

vai

pagei

L4

r1

L3 L2 L1

vaj

pagej

L4

r2

L3 L2 L1

20 / 24

Habitats for Disk Resources in Journaling

• A specification of
recovery would
require both

• Explicitly naming
on the resources
that can be
inferred from their
uniquely
identifying
resource context
name

• Losing duality of
resource contexts
in specifications

0 memStart

Advanced
by
installed

Advanced
by
logger

Advanced
by
Flush

Advanced
by
Commit

Installed
writes

Logged
writes

Writes
being
logged

Unstable
writes

diskEnd nextDiskEnd memEnd

Figure: Depicting Journalling Model

21 / 24

Modal Decomposition of Program-Logics

Modality Context Elements Nominalization Context Steps

Post-Crash+ ♢ P ℓ 7→γ
n v Strong Crash Recovery

NextGen!
t
↪→ P Own (t(a)) Strong Determined Based on the

Model∗

StackRegion∗
ICutn

↪→ P n ℓ 7→ v Strong Alloc and Return to/from stack

Actor# @ι P Variable values Weak Send Message
Memory-Fencex △π and ▽π ℓ 7→ v Weak Fence Acquire and Release
Address Space? [r]P ℓ 7→ v Weak Address Space Switch
Ref-Count& @ℓ P ℓ1 7→ v Weak Allocating, Dropping and Shar-

ing a Reference

∗The StackRegion Modality is an instance of NextGen (called the Independence Modality in [Vindum et al.(2025)]).
+[Chajed(2022), Chajed et al.(2019), Tej Chajed and contributors(2023)]
! [Vindum et al.(2025)]
[Gordon(2019)]
? [Kuru and Gordon(2024), Kuru and Gordon(2025)]
& [Wagner et al.(2024)]
x [Doko and Vafeiadis(2016), Doko and Vafeiadis(2017), Dang et al.(2019)]

22 / 24

Remarks

• This paper:
• First steps in identifying key pieces in building a program logic for real systems
• Nominalization as ”naming resource contexts and its resources” is in the paper

• The verification pattern concepts are not specific to separation logic!
• Actor modelling in Dafny [Gordon(2019)]

• This is an introductory chapter
• The next chapter is on the interaction between resource contexts.

23 / 24

End

• I am on the postdoc job market: https://ismailkuru.github.io/

• Happy to take questions now!

24 / 24

Tej Chajed. 2022.
Verifying a concurrent, crash-safe file system with sequential reasoning.
Ph.D. Dissertation. Machetutes Institute of Technology, Cambridge, MA.
Available at https://dspace.mit.edu/handle/1721.1/144578.

Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. 2019.
Verifying concurrent, crash-safe systems with Perennial. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (Huntsville, Ontario, Canada) (SOSP ’19). Association for Computing
Machinery, New York, NY, USA, 243–258.
doi:10.1145/3341301.3359632

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2019.
RustBelt meets relaxed memory.
Proc. ACM Program. Lang. 4, POPL, Article 34 (Dec. 2019), 29 pages.
doi:10.1145/3371102

Marko Doko and Viktor Vafeiadis. 2016.
A Program Logic for C11 Memory Fences. In Proceedings of the 17th International Conference on Verification,
Model Checking, and Abstract Interpretation - Volume 9583 (St. Petersburg, FL, USA) (VMCAI 2016).
Springer-Verlag, Berlin, Heidelberg, 413–430.
doi:10.1007/978-3-662-49122-5_20

Marko Doko and Viktor Vafeiadis. 2017.
Tackling Real-Life Relaxed Concurrency with FSL++. In Programming Languages and Systems: 26th
European Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings (Uppsala,
Sweden). Springer-Verlag, Berlin, Heidelberg, 448–475.

24 / 24

https://dspace.mit.edu/handle/1721.1/144578
https://doi.org/10.1145/3341301.3359632
https://doi.org/10.1145/3371102
https://doi.org/10.1007/978-3-662-49122-5_20

doi:10.1007/978-3-662-54434-1_17

Colin S Gordon. 2019.
Modal assertions for actor correctness. In Proceedings of the 9th ACM SIGPLAN International Workshop on
Programming Based on Actors, Agents, and Decentralized Control. 11–20.

Ismail Kuru and Colin S. Gordon. 2024.
Modal Abstractions for Virtualizing Memory Addresses.
arXiv:2307.14471 [cs.PL] https://arxiv.org/abs/2307.14471

Ismail Kuru and Colin S. Gordon. 2025.
Modal Verification Patterns for Systems Software. In Proceedings of the 13th Workshop on Programming
Languages and Operating Systems (Seoul, Republic of Korea) (PLOS ’25). Association for Computing
Machinery, New York, NY, USA, 25–33.
doi:10.1145/3764860.3768337

Josep Tassarotti Tej Chajed and contributors. 2023.
Post-crash modality in Perennial’s Coq Mechanization.
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v

Simon Friis Vindum, Äına Linn Georges, and Lars Birkedal. 2025.
The Nextgen Modality: A Modality for Non-Frame-Preserving Updates in Separation Logic. In Proceedings of
the 14th ACM SIGPLAN International Conference on Certified Programs and Proofs (Denver, CO, USA)
(CPP ’25). Association for Computing Machinery, New York, NY, USA, 83–97.
doi:10.1145/3703595.3705876

Andrew Wagner, Zachary Eisbach, and Amal Ahmed. 2024.
Realistic Realizability: Specifying ABIs You Can Count On.

24 / 24

https://doi.org/10.1007/978-3-662-54434-1_17
https://arxiv.org/abs/2307.14471
https://doi.org/10.1145/3764860.3768337
https://github.com/mit-pdos/perennial/blob/master/src/goose_lang/crash_modality.v
https://doi.org/10.1145/3703595.3705876

Proc. ACM Program. Lang. 8, OOPSLA2, Article 315 (Oct. 2024), 30 pages.
doi:10.1145/3689755

24 / 24

https://doi.org/10.1145/3689755

	Systems View
	Logical View
	Logic

