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The Essentials in Systems Programming

a supposedly allocated physical resource
pointer va = malloc (size)
—_——

a virtual reference
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Memory Location Virtualization
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Figure: Virtualization: The Deception of Memory Abundance
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Memory Location Virtualization: Abstraction

An Address Space with Logical
Name ~

Figure: Address-Spaces: Named Containers for
Virtual Memory Mappings

A Program Named
Yn Ym

pointer va :=
malloc (size)

pointer va :=
malloc (size)

® A program is abstracted as a
named address-space

® A container of virtual-to-physical
memory resource mappings

A Program Named
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Address-Space Container of Virtual-to-Physical Mappings

cr3
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root

The Current View of Memory

The register cr3 points to the current view of the

va
/ \ memory, i.e., the loaded address space in the memory
/ § \

Figure: Depicting an Address-Space
with its Essential Aspects
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The Essentials in Systems Programming

a supposedly accesible data at somewhere in the computer
which makes its potential mode unknown : in_memory or on disk or ...

1 FILEx fptr := fopen(filename, mode);

a file handle
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File Page Virtualization

Figure: Virtualization: The Deception of Disk-Page Abundance
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A Global Disk-Page Tree

Page Tree
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File Data Virtualization: Wait! Maybe a Bit More!

2

Figure: Virtualization: The Deception of Disk-Page Abundance Parameterized under Some Consistency
Model
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File Data Virtualization: Abstraction

A Disk-Page Tree with Logical
Name ~,?

Y

\%

2l

Figure: A Global Disk-Page Tree: Named
Containers for File-Page to Disk-Page

Mappings?

An Updated File in 7" Read-Only
Access to a File in
the Named
Disk-Tree the Named
Tn Disk-Tree v,
FILEx fhl :=
FILE fh2 :=

write (data
( ) read (data,sz)

® Could a global disk tree as a
container work for
virtual-to-physical disk resources?

® Maybe? But not always!
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A Global File Page Tree with Multiple Views
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An Example for a Consistency Model: Journalling

o . .
Indlc.es umquely . Installed Logged Writes Unstable
naming the consistent writes writes being writes

logged

pieces of disk and the
updates to be

inserted into the disk 0 memStart diskEnd nextDiskEnd memEnd
e Certain pages of the /\ /\ /\ /\
global tree are valid /\ /\ /\ /\
under different views Advanced Advanced Advanced Advanced
. by by by by
to it installed logger Flush Commit

® Recovery, Atomicity ] o )
Figure: Depicting Journalling Model
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Another Example for a Consistency Model: Copy-On-Writes
Filesystems

® Updates are done on newly allocated resources

® Snapshots are collections of updates

® A uniquely identifying snapshotting identifier naming the consistent pieces of disk.
® Snapshot updates appear on the disk atomically: always have a consistent view of

the disk-tree

® Recovery, Atomicity ....
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Resource: Unital Element as a Fact Matters Most

{P} C{@}
® \What matters most inside P for for the program action C contingently?

® Well-known points-to assertion, e.g., virt_ref — mem_page
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A Virtual Memory Pointsto

® virt_ref — mem_page

cr3

root

virt_ref

IIIL1

OHere ?

/ mem_page
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A Disk Page Pointsto

® An expected points-to assertion, e.g., page_ref —, page

FILE*
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OHere ?: Resource Context

® The habitat of a resource determining its scope of validity
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Habitat of Virtual Memory Mappings

{[r1](va; — page;) * va; — pagej}cr3 = rl{va; — page; * [r2](va; — pagej)}

cr3

\

rl r2

va; vaj

L4 L3 L2 L1 L4 L3 L2 L1
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Habitats for Disk Resources in Journaling

® A specification of
recovery would
require both
® Explicitly naming
on the resources
that can be
inferred from their
uniquely
identifying
resource context
name
® |osing duality of
resource contexts
in specifications

Installed Logged Writes Unstable
writes writes being writes
logged
0 memStart diskEnd nextDiskEnd memEnd
Advanced Advanced Advanced Advanced
by by by by
installed logger Flush Commit

Figure: Depicting Journalling Model
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Modal Decomposition of Program-Logics

Modality Context Elements Nominalization ~ Context Steps
Post-Crash™ o P 0] v Strong Crash Recovery
NextGen' gy Own (t(a)) Strong Determined Based on the
Model*

ICut”
StackRegion* 4 p E] l—v Strong Alloc and Return to/from stack
Actor# o, P Variable values Weak Send Message
Memory-Fence®* Ay and V. {— v Weak Fence Acquire and Release
Address Space’ [P £ v Weak Address Space Switch
Ref-Count® Q, P b1 — v Weak Allocating, Dropping and Shar-

ing a Reference

« The StackRegion Modality is an instance of NextGen ( called the Independence Modality in [Vindum et al.(2025)]).
+[Chajed(2022), Chajed et al.(2019), Tej Chajed and contributors(2023)]

I [Vindum et al.(2025)]

# [Gordon(2019)]

? [Kuru and Gordon(2024), Kuru and Gordon(2025)]

& [Wagner et al.(2024)]

x [Doko and Vafeiadis(2016), Doko and Vafeiadis(2017), Dang et al.(2019)]
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Remarks

® This paper:
® First steps in identifying key pieces in building a program logic for real systems
® Nominalization as " naming resource contexts and its resources’' is in the paper

® The verification pattern concepts are not specific to separation logic!
® Actor modelling in Dafny [Gordon(2019)]

® This is an introductory chapter
® The next chapter is on the interaction between resource contexts.
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End

® | am on the postdoc job market: https://ismailkuru.github.io/

® Happy to take questions now!
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