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Why Drivers?

¢ Device driver bugs are a major
source of OS vulnerabilities
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Why Drivers?

¢ Device driver bugs are a major
source of OS vulnerabilities
o Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]
¢ Dominant cause of Linux driver bugs

is device-protocol violations [Ryzhyk
et al. 2009]

Device protocol

38%

SW protocol
20%

Generic

23%

Concurrency

19%

Causes of Linux driver bugs (2002-2008)

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW



Why Drivers?

¢ Device driver bugs are a major
source of OS vulnerabilities
o Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]
¢ Dominant cause of Linux driver bugs
is device-protocol violations [Ryzhyk
et al. 2009]
o Without knowledge of the device
protocol, formal verification cannot
prevent these
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Aim

¢ Prevent device-protocol bugs by:
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o Formally specifying device
interfaces

High-Fidelity Specification of Real-World Devices, Oct’ 2025

C

Device specification

)

© Liam Murphy 2025, CC-BY-SA 4.0



Aim

¢ Prevent device-protocol bugs by:
o Formally specifying device
interfaces
o Verifying these specifications
against the device implementation
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Aim

¢ Prevent device-protocol bugs by: Proof
o Formally specifying device :
interfaces ( Device specification )
o Verifying these specifications
against the device implementation Proof
e Future work: driver verification
( Device implementation )
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Overview

Target hardware
Verification approach
Specification format
Application

Status
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Target Hardware

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW



Target Hardware

Cheshire
CPU 12C
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Target Hardware

Verilog | Driver | HOL spec
I°C 5993 | 713 1414
SPI 4609 | 864 1235
Ethernet | 3987 | 641 N/A
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Verification Approach
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Tools

e HOL4 theorem prover
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e HOL4 Verilog formalisation [L66w
and Myreen 2019]:
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e HOL4 Verilog formalisation [L66w
and Myreen 2019]:

o Semantics for Verilog AST
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Tools

* HOL4 theorem prover o (Functional Representation)
e HOL4 Verilog formalisation [L66w

and Myreen 2019]:
o Semantics for Verilog AST

o Semantics for functional ( Verilog AST )
representation
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Tools

e HOL4 theorem prover

o . (Functional Representation)
e HOL4 Verilog formalisation [L66w

and Myreen 2019] Translator
o Semantics for Verilog AST
o Semantics for functional ( Verilog AST )
representation

o Proof-producing translator from
functional to AST
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Tools

e HOL4 theorem prover

e HOL4 Verilog formalisation [L66w
and Myreen 2019]:

o Semantics for Verilog AST
Semantics for functional
representation
Proof-producing translator from
functional to AST
Pretty-printer for deep embedding

o

e}

o
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Tools

e HOL4 theorem prover
e HOL4 Verilog formalisation [L66w
and Myreen 2019]:
o Semantics for Verilog AST
o Semantics for functional
representation
o Proof-producing translator from
functional to AST
o Pretty-printer for deep embedding

¢ Problem: need opposite direction
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Workflow

( Device specification )

~

¢ Workaround:

Proof

( Ve:ilog )
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Workflow

¢ Workaround:

o Manually translate Verilog to
functional representation
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Workflow

¢ Workaround:

o Manually translate Verilog to
functional representation
o Translate and export into Verilog
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Workflow

¢ Workaround:

o Manually translate Verilog to
functional representation
o Translate and export into Verilog
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Workflow

e Workaround:
o Manually translate Verilog to
functional representation
o Translate and export into Verilog
o Use equivalence-checker (eqy) to
prove equivalence to original
Verilog
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12

Workflow

e Workaround:
o Manually translate Verilog to
functional representation
o Translate and export into Verilog
o Use equivalence-checker (eqy) to
prove equivalence to original
Verilog

¢ Finally, prove that functional
representation refines specification
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Specification Format
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Specification Format

Clock 1

Input (From Driver)

A
State s s X X
A

Output (To Driver)
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Specification Format

Clock 1

Input (From Driver)

A
State X e X ey X - X -
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Specification Format

Clock 1

Input (From Driver) A A s

X
State X o Yoo X X -
A A A X

Output (To Driver)
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Specification Format

Clock 1
Input (From Driver) X X X X
State ) ST (DU G 6
Output (To Driver) X ot Yoo X X -
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Specification Format

Clock 1
Input (From Driver) X X X X
State ) ST (DU G 6
Output (To Driver) X ot Yoo X X -

R S Sy
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Non-Determinism

¢ Model can be non-deterministic
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Non-Determinism

¢ Model can be non-deterministic

o Inputs not controlled by driver
o Underspecification

e fonly returns one possible state
e Determined by fnums - infinite stream of numbers
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Non-Determinism

Model can be non-deterministic

o Inputs not controlled by driver
o Underspecification

f only returns one possible state

Determined by fnums - infinite stream of numbers

To obtain set of all possible states, try all fnums
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Application to Cheshire
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Structure of Cheshire Peripherals
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Structure of Cheshire Peripherals

Bus
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Structure of Cheshire Peripherals

Bus
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Structure of Cheshire Peripherals O==

Register values
SCL

Notifications SDA

Bus

Register updates
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Structure of Cheshire Peripherals O==

Register values
SCL

Notifications SDA

Bus

Register updates

Autogenerated!
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Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire run tick read write:
state -> list ->
ffi outcome + state # word32 option list
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Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire run tick read write:
state -> list ->
ffi outcome + state # list

¢ Input instantiated with optional MMIO request
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Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire_run tick read write:
state -> list ->
ffi_outcome + state # list
¢ Input instantiated with optional MMIO request

¢ QOutput instantiated with response to read requests
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Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire run tick read write:
state -> list ->
ffi outcome + state # list

¢ |nput instantiated with optional MMIO request
¢ QOutput instantiated with response to read requests
e Executes multiple cycles
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Cheshire Specifications

cheshire_run tick read write:
state -> list ->
ffi outcome + state # word32 option list

e tick represents core logic
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Cheshire Specifications

cheshire_run tick read write:
state -> list ->
ffi_outcome + state # list

e tick represents core logic
e read, write and cheshire_run represent address-decoding logic
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Status
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Status

I2C SPI
Address-decoding | Core | Address-decoding | Core
Specification
Functional Representation
Equivalence-checking
Correctness proof
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Questions?

Note

UNSW is recruiting OS faculty members - talk to Gernot if you're interested
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