=

School of Computer Science & Engineering
UNSW Australias Trustworthy Systems Group

Global
SYDNEY

University

High-Fidelity Specification of Real-World Devices

Liam Murphy ' Albert Rizaldi? Lesley Rossouw '

Chen George ® James Treloar ' Hammond Pearce '
Miki Tanaka ' Gernot Heiser '

TUNSW Sydney 2PlanV GmbH 3University of Wisconsin - Madison

PLOS 25

Background

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

Who Are We? O==

Console | Timer VFS IwiP

' Application

MicroPython

Cop
Cop

v

Tx-Virt @ Rx-Virt . A
. - Rx-Virt
LionsOS -
Serial Ethernet
Driver Driver

Serial Clock Ethernet
Device Device Device

Hardware

High-Fidelity Specification of Real-World Devices, Oct' 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Who Are We? O==

Console | Timer VFS

MicroPython

LionsOS

Serial

Hardware Device) Device

High-Fidelity Specification of Real-World Devices, Oct' 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Who Are We? O==

Console | Timer VES IwIP

' Application

MicroPython

Cop
Cop

v

Tx-Virt @ Rx-Virt - .
. - Rx-Virt
LionsOS -

A\ 4

Serial Clock Ethernet
Driver Driver Driver

erlal Clock Ethernet .
Hardware ‘ DeV|ce ’ (Device ’ ‘ Device ’ This Talk
~ N———

High-Fidelity Specification of Real-World Devices, Oct' 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Why Drivers?

¢ Device driver bugs are a major
source of OS vulnerabilities

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

Why Drivers?

¢ Device driver bugs are a major
source of OS vulnerabilities
o Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

Why Drivers?

¢ Device driver bugs are a major
source of OS vulnerabilities
o Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]
¢ Dominant cause of Linux driver bugs

is device-protocol violations [Ryzhyk
et al. 2009]

Device protocol

38%

SW protocol
20%

Generic

23%

Concurrency

19%

Causes of Linux driver bugs (2002-2008)

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Why Drivers?

¢ Device driver bugs are a major
source of OS vulnerabilities
o Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]
¢ Dominant cause of Linux driver bugs
is device-protocol violations [Ryzhyk
et al. 2009]
o Without knowledge of the device
protocol, formal verification cannot
prevent these

High-Fidelity Specification of Real-World Devices, Oct’ 2025

Device protocol

38%

SW protocol
20%

Generic

23%

Concurrency

19%

Causes of Linux driver bugs (2002-2008)

© Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Aim

¢ Prevent device-protocol bugs by:

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

Aim

¢ Prevent device-protocol bugs by:
o Formally specifying device
interfaces

High-Fidelity Specification of Real-World Devices, Oct’ 2025

C

Device specification

)

© Liam Murphy 2025, CC-BY-SA 4.0

Aim

¢ Prevent device-protocol bugs by:
o Formally specifying device
interfaces
o Verifying these specifications
against the device implementation

High-Fidelity Specification of Real-World Devices, Oct’ 2025

C

Device specification

)

Proof

C

Device implementation

© Liam Murphy 2025, CC-BY-SA 4.0

Aim

¢ Prevent device-protocol bugs by: Proof
o Formally specifying device :
interfaces (Device specification)
o Verifying these specifications
against the device implementation Proof
e Future work: driver verification
(Device implementation)

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 g IRy

Overview

Target hardware
Verification approach
Specification format
Application

Status

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

Target Hardware

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Target Hardware

Cheshire
CPU 12C
CPU Crossbar SPI
cPy Ethernet

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

Target Hardware

Cheshire
CPU 12C 1°C Target
CPU Crossbar SPI SPI Target
Py Ethernet Network

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

Target Hardware

Cheshire
CPU 12C 1°C Target
CPU Crossbar SPI SPI Target
Py Ethernet Network

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

Target Hardware

Verilog | Driver | HOL spec
I°C 5993 | 713 1414
SPI 4609 | 864 1235
Ethernet | 3987 | 641 N/A

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

Verification Approach

10 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

11

Tools

e HOL4 theorem prover

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

11

Tools

e HOL4 theorem prover

e HOL4 Verilog formalisation [L66w
and Myreen 2019]:

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

Tools

e HOL4 theorem prover

e HOL4 Verilog formalisation [L66w
and Myreen 2019]:

o Semantics for Verilog AST

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025

C

Verilog AST)

© Liam Murphy 2025, CC-BY-SA 4.0

Tools

* HOL4 theorem prover o (Functional Representation)
e HOL4 Verilog formalisation [L66w

and Myreen 2019]:
o Semantics for Verilog AST

o Semantics for functional (Verilog AST)
representation

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 < UNSW

Tools

e HOL4 theorem prover

o . (Functional Representation)
e HOL4 Verilog formalisation [L66w

and Myreen 2019] Translator
o Semantics for Verilog AST
o Semantics for functional (Verilog AST)
representation

o Proof-producing translator from
functional to AST

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 < UNSW

Tools

e HOL4 theorem prover

e HOL4 Verilog formalisation [L66w
and Myreen 2019]:

o Semantics for Verilog AST
Semantics for functional
representation
Proof-producing translator from
functional to AST
Pretty-printer for deep embedding

o

e}

o

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025

(Functional Representation)

Translator

C

Verilog AST)

Pretty-printer

C

Verilog)

© Liam Murphy 2025, CC-BY-SA 4.0

Tools

e HOL4 theorem prover
e HOL4 Verilog formalisation [L66w
and Myreen 2019]:
o Semantics for Verilog AST
o Semantics for functional
representation
o Proof-producing translator from
functional to AST
o Pretty-printer for deep embedding

¢ Problem: need opposite direction

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025

(Functional Representation)«---;

Translator

C

Verilog AST

) Desired

Pretty-printer

C

Verilog >

© Liam Murphy 2025, CC-BY-SA 4.0 £ UNSW

Workflow

(Device specification)

~

¢ Workaround:

Proof

(Ve:ilog)

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 < UNSW

Workflow

¢ Workaround:

o Manually translate Verilog to
functional representation

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025

(Device specification)

Py

: Proof
(Functional Representation}—

~

Proof Manual

(Veréilog)—

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

12

Workflow

¢ Workaround:

o Manually translate Verilog to
functional representation
o Translate and export into Verilog

High-Fidelity Specification of Real-World Devices, Oct’ 2025

(Device specification)

Py

. Proof

(Functional Representation}—

Translator

Proof

C

)

Verilog AST

Proof

Verilog

)_

Manual

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

12

Workflow

¢ Workaround:

o Manually translate Verilog to
functional representation
o Translate and export into Verilog

High-Fidelity Specification of Real-World Devices, Oct’ 2025

(Device specification)

Py

. Proof

(Functional Representation}—

Translator

Proof

C

Verilog AST

)

Pretty-printer

C

)

Output Verilog

: Proof

C

Verilog

)_

Manual

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

Workflow

e Workaround:
o Manually translate Verilog to
functional representation
o Translate and export into Verilog
o Use equivalence-checker (eqy) to
prove equivalence to original
Verilog

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025

(Device specification)

Py

. Proof

(Functional Representation}—

Translator

Proof

C

Verilog AST

)

Pretty-printer

C

Output Verilog)

Equivalence checker

C

Verilog

)_

Manual

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

12

Workflow

e Workaround:
o Manually translate Verilog to
functional representation
o Translate and export into Verilog
o Use equivalence-checker (eqy) to
prove equivalence to original
Verilog

¢ Finally, prove that functional
representation refines specification

High-Fidelity Specification of Real-World Devices, Oct’ 2025

(Device specification)

Proof

(Functional Representation}—

Translator

Proof

C

Verilog AST

)

Pretty-printer

C

Output Verilog)

Equivalence checker

C

Verilog

)_

Manual

© Liam Murphy 2025, CC-BY-SA 4.0

UNSW

Specification Format

13 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Specification Format

Clock 1

Input (From Driver)

A
State s s X X
A

Output (To Driver)

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Specification Format

Clock 1

Input (From Driver)

A
State X e X ey X - X -
A

Output (To Driver)

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Specification Format

Clock 1

Input (From Driver) A A s

X
State X o Yoo X X -
A A A X

Output (To Driver)

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Specification Format

Clock 1
Input (From Driver) X X X X
State) ST (DU G 6
Output (To Driver) X ot Yoo X X -

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Specification Format

Clock 1
Input (From Driver) X X X X
State) ST (DU G 6
Output (To Driver) X ot Yoo X X -

R S Sy

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

15

Non-Determinism

¢ Model can be non-deterministic

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

15

Non-Determinism

¢ Model can be non-deterministic
o Inputs not controlled by driver

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

15

Non-Determinism

¢ Model can be non-deterministic

o Inputs not controlled by driver
o Underspecification

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

15

Non-Determinism

¢ Model can be non-deterministic

o Inputs not controlled by driver
o Underspecification

e { only returns one possible state

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

15

Non-Determinism

¢ Model can be non-deterministic

o Inputs not controlled by driver
o Underspecification

e fonly returns one possible state
e Determined by fnums - infinite stream of numbers

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

15

Non-Determinism

Model can be non-deterministic

o Inputs not controlled by driver
o Underspecification

f only returns one possible state

Determined by fnums - infinite stream of numbers

To obtain set of all possible states, try all fnums

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

Application to Cheshire

16 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

17

Structure of Cheshire Peripherals

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

17

Structure of Cheshire Peripherals

Bus

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

17

Structure of Cheshire Peripherals

Bus

High-Fidelity Specification of Real-World Devices, Oct’ 2025

SCL
SDA

© Liam Murphy 2025, CC-BY-SA 4.0

17

Structure of Cheshire Peripherals O==

Register values
SCL

Notifications SDA

Bus

Register updates

High-Fidelity Specification of Real-World Devices, Oct' 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

17

Structure of Cheshire Peripherals O==

Register values
SCL

Notifications SDA

Bus

Register updates

Autogenerated!

High-Fidelity Specification of Real-World Devices, Oct' 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire run tick read write:
state -> list ->
ffi outcome + state # word32 option list

18 High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

¥

Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire run tick read write:
state -> list ->
ffi outcome + state # list

¢ Input instantiated with optional MMIO request

18 High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

18

Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire_run tick read write:
state -> list ->
ffi_outcome + state # list
¢ Input instantiated with optional MMIO request

¢ QOutput instantiated with response to read requests

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

18

Cheshire Specifications

e Format of Cheshire peripheral specifications:
cheshire run tick read write:
state -> list ->
ffi outcome + state # list

¢ |nput instantiated with optional MMIO request
¢ QOutput instantiated with response to read requests
e Executes multiple cycles

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

19

Cheshire Specifications

cheshire_run tick read write:
state -> list ->
ffi outcome + state # word32 option list

e tick represents core logic

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

*

19

Cheshire Specifications

cheshire_run tick read write:
state -> list ->
ffi_outcome + state # list

e tick represents core logic
e read, write and cheshire_run represent address-decoding logic

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

20

Status

High-Fidelity Specification of Real-World Devices, Oct’ 2025

© Liam Murphy 2025, CC-BY-SA 4.0

21

Status

I2C SPI
Address-decoding | Core | Address-decoding | Core
Specification
Functional Representation
Equivalence-checking
Correctness proof
High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0 UNSW

22

Questions?

Note

UNSW is recruiting OS faculty members - talk to Gernot if you're interested

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

23

References

[4 Pohjola, Johannes Aman et al. (Oct. 2023). “Pancake: Verified Systems
Programming Made Sweeter”.

(4 Ryzhyk, Leonid et al. (Apr. 2009). “Dingo: Taming Device Drivers”.

(4 Lodw, Andreas and Magnus O. Myreen (2019). “A proof-producing translator
for Verilog development in HOL”.

High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

	Background
	Target Hardware
	Verification Approach
	Specification Format
	Application to Cheshire
	Status
	References

