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TSWhy Drivers?

• Device driver bugs are a major
source of OS vulnerabilities

◦ Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]

• Dominant cause of Linux driver bugs
is device-protocol violations [Ryzhyk
et al. 2009]

◦ Without knowledge of the device
protocol, formal verification cannot
prevent these
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TSAim

• Prevent device-protocol bugs by:

◦ Formally specifying device
interfaces

◦ Verifying these specifications
against the device implementation

• Future work: driver verification
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TSOverview

• Target hardware
• Verification approach
• Specification format
• Application
• Status

6 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0



TS

Target Hardware
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TSTarget Hardware

Verilog Driver HOL spec
I2C 5993 713 1414
SPI 4609 864 1235

Ethernet 3987 641 N/A
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TS

Verification Approach
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TSTools

• HOL4 theorem prover

• HOL4 Verilog formalisation [Lööw
and Myreen 2019]:

◦ Semantics for Verilog AST
◦ Semantics for functional

representation
◦ Proof-producing translator from

functional to AST
◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST
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Desired
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TSWorkflow

• Workaround:

◦ Manually translate Verilog to
functional representation

◦ Translate and export into Verilog
◦ Use equivalence-checker (eqy) to

prove equivalence to original
Verilog

• Finally, prove that functional
representation refines specification

Device specification
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Specification Format
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TSSpecification Format

Clock

Input (From Driver) i0 i1 i2 i4 i5

State s0 s1 s2 s4 s5

Output (To Driver) o0 o1 o2 o3 o4

f : s → i → s × o
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TSNon-Determinism

• Model can be non-deterministic

◦ Inputs not controlled by driver
◦ Underspecification

• f only returns one possible state
• Determined by fnums - infinite stream of numbers
• To obtain set of all possible states, try all fnums
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TS

Application to Cheshire
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TSStructure of Cheshire Peripherals
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TSCheshire Specifications

• Format of Cheshire peripheral specifications:
cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• Input instantiated with optional MMIO request
• Output instantiated with response to read requests
• Executes multiple cycles
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TSCheshire Specifications

cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• tick represents core logic

• read, write and cheshire run represent address-decoding logic
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TS

Status
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TSStatus

I2C SPI
Address-decoding Core Address-decoding Core

Specification ✓ ✓ ✓ ✓
Functional Representation ✓ ✓ ✓ WIP

Equivalence-checking ✓ WIP ✓ WIP
Correctness proof ✓ Almost! ✓ WIP
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TSQuestions?

Note
UNSW is recruiting OS faculty members - talk to Gernot if you’re interested
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