
School of Computer Science & Engineering

Trustworthy Systems Group TS

High-Fidelity Specification of Real-World Devices
Liam Murphy 1 Albert Rizaldi 2 Lesley Rossouw 1

Chen George 3 James Treloar 1 Hammond Pearce 1

Miki Tanaka 1 Gernot Heiser 1

1UNSW Sydney 2PlanV GmbH 3University of Wisconsin - Madison

PLOS ’25

TS

Background

2 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWho Are We?

Runtime lwIPVFSTimerConsole

Application Webserver.py Microdot
MicroPython

Clock
Driver

NFS
lwIP

Serial
Driver

Serial
Device

Clock
Device

Ethernet
Device

Tx-Virt Rx-Virt

Ethernet
Driver

Tx-Virt Rx-Virt

Copy
Copy

LionsOS

Hardware

3 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWho Are We?

Runtime lwIPVFSTimerConsole

Application Webserver.py Microdot
MicroPython

Clock
Driver

NFS
lwIP

Serial
Driver

Serial
Device

Clock
Device

Ethernet
Device

Tx-Virt Rx-Virt

Ethernet
Driver

Tx-Virt Rx-Virt

Copy
Copy

LionsOS

Hardware

Verify

3 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWho Are We?

Runtime lwIPVFSTimerConsole

Application Webserver.py Microdot
MicroPython

Clock
Driver

NFS
lwIP

Serial
Driver

Serial
Device

Clock
Device

Ethernet
Device

Tx-Virt Rx-Virt

Ethernet
Driver

Tx-Virt Rx-Virt

Copy
Copy

LionsOS

Hardware This Talk

3 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWhy Drivers?

• Device driver bugs are a major
source of OS vulnerabilities

◦ Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]

• Dominant cause of Linux driver bugs
is device-protocol violations [Ryzhyk
et al. 2009]

◦ Without knowledge of the device
protocol, formal verification cannot
prevent these

Device protocol

38%
SW protocol

20%

Concurrency

19%

Generic

23%

Causes of Linux driver bugs (2002–2008)

4 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWhy Drivers?

• Device driver bugs are a major
source of OS vulnerabilities

◦ Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]

• Dominant cause of Linux driver bugs
is device-protocol violations [Ryzhyk
et al. 2009]

◦ Without knowledge of the device
protocol, formal verification cannot
prevent these

Device protocol

38%
SW protocol

20%

Concurrency

19%

Generic

23%

Causes of Linux driver bugs (2002–2008)

4 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWhy Drivers?

• Device driver bugs are a major
source of OS vulnerabilities

◦ Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]

• Dominant cause of Linux driver bugs
is device-protocol violations [Ryzhyk
et al. 2009]

◦ Without knowledge of the device
protocol, formal verification cannot
prevent these

Device protocol

38%
SW protocol

20%

Concurrency

19%

Generic

23%

Causes of Linux driver bugs (2002–2008)

4 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWhy Drivers?

• Device driver bugs are a major
source of OS vulnerabilities

◦ Cause of majority of Linux CVEs
from 2018-2022 [Pohjola et al.
2023]

• Dominant cause of Linux driver bugs
is device-protocol violations [Ryzhyk
et al. 2009]

◦ Without knowledge of the device
protocol, formal verification cannot
prevent these

Device protocol

38%
SW protocol

20%

Concurrency

19%

Generic

23%

Causes of Linux driver bugs (2002–2008)

4 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSAim

• Prevent device-protocol bugs by:

◦ Formally specifying device
interfaces

◦ Verifying these specifications
against the device implementation

• Future work: driver verification

Device specification

Device implementation

Proof

Device driver

Proof

5 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSAim

• Prevent device-protocol bugs by:
◦ Formally specifying device

interfaces

◦ Verifying these specifications
against the device implementation

• Future work: driver verification

Device specification

Device implementation

Proof

Device driver

Proof

5 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSAim

• Prevent device-protocol bugs by:
◦ Formally specifying device

interfaces
◦ Verifying these specifications

against the device implementation

• Future work: driver verification

Device specification

Device implementation

Proof

Device driver

Proof

5 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSAim

• Prevent device-protocol bugs by:
◦ Formally specifying device

interfaces
◦ Verifying these specifications

against the device implementation

• Future work: driver verification

Device specification

Device implementation

Proof

Device driver

Proof

5 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSOverview

• Target hardware
• Verification approach
• Specification format
• Application
• Status

6 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TS

Target Hardware

7 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTarget Hardware

CrossbarCPU

CPU

CPU

SPI

I2C

Ethernet

Cheshire

I2C Target

SPI Target

Network

Target

Eventually

8 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTarget Hardware

CrossbarCPU

CPU

CPU

SPI

I2C

Ethernet

Cheshire

I2C Target

SPI Target

Network

Target

Eventually

8 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTarget Hardware

CrossbarCPU

CPU

CPU

SPI

I2C

Ethernet

Cheshire

I2C Target

SPI Target

Network

Target

Eventually

8 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTarget Hardware

Verilog Driver HOL spec
I2C 5993 713 1414
SPI 4609 864 1235

Ethernet 3987 641 N/A

9 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TS

Verification Approach

10 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTools

• HOL4 theorem prover

• HOL4 Verilog formalisation [Lööw
and Myreen 2019]:

◦ Semantics for Verilog AST
◦ Semantics for functional

representation
◦ Proof-producing translator from

functional to AST
◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST

Functional Representation

Translator

Verilog

Pretty-printer

Desired

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTools

• HOL4 theorem prover
• HOL4 Verilog formalisation [Lööw

and Myreen 2019]:

◦ Semantics for Verilog AST
◦ Semantics for functional

representation
◦ Proof-producing translator from

functional to AST
◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST

Functional Representation

Translator

Verilog

Pretty-printer

Desired

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTools

• HOL4 theorem prover
• HOL4 Verilog formalisation [Lööw

and Myreen 2019]:
◦ Semantics for Verilog AST

◦ Semantics for functional
representation

◦ Proof-producing translator from
functional to AST

◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST

Functional Representation

Translator

Verilog

Pretty-printer

Desired

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTools

• HOL4 theorem prover
• HOL4 Verilog formalisation [Lööw

and Myreen 2019]:
◦ Semantics for Verilog AST
◦ Semantics for functional

representation

◦ Proof-producing translator from
functional to AST

◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST

Functional Representation

Translator

Verilog

Pretty-printer

Desired

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTools

• HOL4 theorem prover
• HOL4 Verilog formalisation [Lööw

and Myreen 2019]:
◦ Semantics for Verilog AST
◦ Semantics for functional

representation
◦ Proof-producing translator from

functional to AST

◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST

Functional Representation

Translator

Verilog

Pretty-printer

Desired

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTools

• HOL4 theorem prover
• HOL4 Verilog formalisation [Lööw

and Myreen 2019]:
◦ Semantics for Verilog AST
◦ Semantics for functional

representation
◦ Proof-producing translator from

functional to AST
◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST

Functional Representation

Translator

Verilog

Pretty-printer

Desired

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSTools

• HOL4 theorem prover
• HOL4 Verilog formalisation [Lööw

and Myreen 2019]:
◦ Semantics for Verilog AST
◦ Semantics for functional

representation
◦ Proof-producing translator from

functional to AST
◦ Pretty-printer for deep embedding

• Problem: need opposite direction

Verilog AST

Functional Representation

Translator

Verilog

Pretty-printer

Desired

11 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWorkflow

• Workaround:

◦ Manually translate Verilog to
functional representation

◦ Translate and export into Verilog
◦ Use equivalence-checker (eqy) to

prove equivalence to original
Verilog

• Finally, prove that functional
representation refines specification

Device specification

Verilog

Proof

Functional Representation

Manual

Proof

Proof

Verilog AST

Translator Proof

ProofOutput Verilog

Pretty-printer

ProofEquivalence checker

Proof

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWorkflow

• Workaround:
◦ Manually translate Verilog to

functional representation

◦ Translate and export into Verilog
◦ Use equivalence-checker (eqy) to

prove equivalence to original
Verilog

• Finally, prove that functional
representation refines specification

Device specification

Verilog

Proof

Functional Representation

Manual

Proof

Proof

Verilog AST

Translator Proof

ProofOutput Verilog

Pretty-printer

ProofEquivalence checker

Proof

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWorkflow

• Workaround:
◦ Manually translate Verilog to

functional representation
◦ Translate and export into Verilog

◦ Use equivalence-checker (eqy) to
prove equivalence to original
Verilog

• Finally, prove that functional
representation refines specification

Device specification

Verilog

Proof

Functional Representation

Manual

Proof

Proof

Verilog AST

Translator Proof

Proof

Output Verilog

Pretty-printer

ProofEquivalence checker

Proof

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWorkflow

• Workaround:
◦ Manually translate Verilog to

functional representation
◦ Translate and export into Verilog

◦ Use equivalence-checker (eqy) to
prove equivalence to original
Verilog

• Finally, prove that functional
representation refines specification

Device specification

Verilog

Proof

Functional Representation

Manual

Proof

Proof

Verilog AST

Translator Proof

Proof

Output Verilog

Pretty-printer

Proof

Equivalence checker

Proof

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWorkflow

• Workaround:
◦ Manually translate Verilog to

functional representation
◦ Translate and export into Verilog
◦ Use equivalence-checker (eqy) to

prove equivalence to original
Verilog

• Finally, prove that functional
representation refines specification

Device specification

Verilog

Proof

Functional Representation

Manual

Proof

Proof

Verilog AST

Translator Proof

Proof

Output Verilog

Pretty-printer

Proof

Equivalence checker

Proof

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSWorkflow

• Workaround:
◦ Manually translate Verilog to

functional representation
◦ Translate and export into Verilog
◦ Use equivalence-checker (eqy) to

prove equivalence to original
Verilog

• Finally, prove that functional
representation refines specification

Device specification

Verilog

Proof

Functional Representation

Manual

Proof

Proof

Verilog AST

Translator Proof

Proof

Output Verilog

Pretty-printer

Proof

Equivalence checker

Proof

12 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TS

Specification Format

13 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSSpecification Format

Clock

Input (From Driver) i0 i1 i2 i4 i5

State s0 s1 s2 s4 s5

Output (To Driver) o0 o1 o2 o3 o4

f : s → i → s × o

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSSpecification Format

Clock

Input (From Driver) i0 i1 i2 i4 i5

State s0 f (s0) f (f (s0))

Output (To Driver) o0 o1 o2 o3 o4

f : s → i → s × o

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSSpecification Format

Clock

Input (From Driver) i0 i1 i2 i4 i5

State s0 f (s0, i0) f (f (s0, i0), i1)

Output (To Driver) o0 o1 o2 o3 o4

f : s → i → s × o

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSSpecification Format

Clock

Input (From Driver) i0 i1 i2 i4 i5

State s0 f (s0, i0).0 f (f (s0, i0), i1).0

Output (To Driver) o0 f (s0, i0).1 f (f (s0, i0), i1).1

f : s → i → s × o

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSSpecification Format

Clock

Input (From Driver) i0 i1 i2 i4 i5

State s0 f (s0, i0).0 f (f (s0, i0), i1).0

Output (To Driver) o0 f (s0, i0).1 f (f (s0, i0), i1).1

f : s → i → s × o

14 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSNon-Determinism

• Model can be non-deterministic

◦ Inputs not controlled by driver
◦ Underspecification

• f only returns one possible state
• Determined by fnums - infinite stream of numbers
• To obtain set of all possible states, try all fnums

15 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSNon-Determinism

• Model can be non-deterministic
◦ Inputs not controlled by driver

◦ Underspecification

• f only returns one possible state
• Determined by fnums - infinite stream of numbers
• To obtain set of all possible states, try all fnums

15 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSNon-Determinism

• Model can be non-deterministic
◦ Inputs not controlled by driver
◦ Underspecification

• f only returns one possible state
• Determined by fnums - infinite stream of numbers
• To obtain set of all possible states, try all fnums

15 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSNon-Determinism

• Model can be non-deterministic
◦ Inputs not controlled by driver
◦ Underspecification

• f only returns one possible state

• Determined by fnums - infinite stream of numbers
• To obtain set of all possible states, try all fnums

15 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSNon-Determinism

• Model can be non-deterministic
◦ Inputs not controlled by driver
◦ Underspecification

• f only returns one possible state
• Determined by fnums - infinite stream of numbers

• To obtain set of all possible states, try all fnums

15 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSNon-Determinism

• Model can be non-deterministic
◦ Inputs not controlled by driver
◦ Underspecification

• f only returns one possible state
• Determined by fnums - infinite stream of numbers
• To obtain set of all possible states, try all fnums

15 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TS

Application to Cheshire

16 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSStructure of Cheshire Peripherals

Bus
Address-

decoding logic
Core logic SCL

SDA

Register values

Notifications

Register updates

Autogenerated!

Register values

Notifications

Register updates

17 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSStructure of Cheshire Peripherals

Bus
Address-

decoding logic

Core logic SCL
SDA

Register values

Notifications

Register updates

Autogenerated!

Register values

Notifications

Register updates

17 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSStructure of Cheshire Peripherals

Bus
Address-

decoding logic
Core logic SCL

SDA

Register values

Notifications

Register updates

Autogenerated!

Register values

Notifications

Register updates

17 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSStructure of Cheshire Peripherals

Bus
Address-

decoding logic
Core logic SCL

SDA

Register values

Notifications

Register updates

Autogenerated!

Register values

Notifications

Register updates

17 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSStructure of Cheshire Peripherals

Bus
Address-

decoding logic
Core logic SCL

SDA

Register values

Notifications

Register updates

Autogenerated!

Register values

Notifications

Register updates

17 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSCheshire Specifications

• Format of Cheshire peripheral specifications:
cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• Input instantiated with optional MMIO request
• Output instantiated with response to read requests
• Executes multiple cycles

18 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSCheshire Specifications

• Format of Cheshire peripheral specifications:
cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• Input instantiated with optional MMIO request

• Output instantiated with response to read requests
• Executes multiple cycles

18 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSCheshire Specifications

• Format of Cheshire peripheral specifications:
cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• Input instantiated with optional MMIO request
• Output instantiated with response to read requests

• Executes multiple cycles

18 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSCheshire Specifications

• Format of Cheshire peripheral specifications:
cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• Input instantiated with optional MMIO request
• Output instantiated with response to read requests
• Executes multiple cycles

18 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSCheshire Specifications

cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• tick represents core logic

• read, write and cheshire run represent address-decoding logic

19 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSCheshire Specifications

cheshire run tick read write:

state -> req option list ->

ffi outcome + state # word32 option list

• tick represents core logic
• read, write and cheshire run represent address-decoding logic

19 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TS

Status

20 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSStatus

I2C SPI
Address-decoding Core Address-decoding Core

Specification ✓ ✓ ✓ ✓
Functional Representation ✓ ✓ ✓ WIP

Equivalence-checking ✓ WIP ✓ WIP
Correctness proof ✓ Almost! ✓ WIP

21 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSQuestions?

Note
UNSW is recruiting OS faculty members - talk to Gernot if you’re interested

22 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

TSReferences

Pohjola, Johannes Åman et al. (Oct. 2023). “Pancake: Verified Systems
Programming Made Sweeter”. In: Workshop on Programming Languages and
Operating Systems (PLOS). Koblenz, DE.
Ryzhyk, Leonid et al. (Apr. 2009). “Dingo: Taming Device Drivers”. In: EuroSys
Conference. Nuremberg, DE, pp. 275–288.
Lööw, Andreas and Magnus O. Myreen (2019). “A proof-producing translator
for Verilog development in HOL”. In: Proceedings of the International Workshop
on Formal Methods in Software Engineering (FormaliSE@ICSE), pp. 99–108.

23 High-Fidelity Specification of Real-World Devices, Oct’ 2025 © Liam Murphy 2025, CC-BY-SA 4.0

	Background
	Target Hardware
	Verification Approach
	Specification Format
	Application to Cheshire
	Status
	References

