Propagating C++ Exceptions across
the User/Kernel Boundary

Dmitry Voronetskiy and Tom Spink
University of St Andrews

A little bit about me

Tom Spink
Lecturer, School of Computer Science
FBCS

Interested in:

Dynamic Binary Translation
Virtualisation

Hardware acceleration
Operating Systems
Compilers

Trains

And more generally...

e Computer systems!

Programming
Languages

Operating
Systems

Error
codes

EBADF

EFAULT

EINVAL

No error handling

int fd = open(“some file”, O_RDONLY);
read(fd, buffer, 128);
close(fd);

Some error handling

int fd = open(“some file”, O RDONLY);
if (fd < 9) {
printf(“an error occurred\n”);
return 1;
}
read(fd, buffer, 128);
close(fd);

Better error handling

int fd = open(“some file”, O RDONLY);
if (fd < 9) {
perror(“error opening file”);
return 1;
}
read(fd, buffer, 128);
close(fd);

:
V%ﬂ But what is the error?

open(2) System Calls Manual open(2)
NAME top

open, openat, creat - open and possibly create a file
LIBRARY top

Standard C library (libc, -1c)

SYNOPSIS top

But what is the error?

ERRORS top
open(), openat(), and creat() can fail with the following errors:

EACCES The requested access to the file is not allowed, or search
permission is denied for one of the directories in the path
prefix of pathname, or the file did not exist yet and write
access to the parent directory is not allowed. (See also
path_resolution(7).)

EACCES Where O_CREAT is specified, the protected_fifos or
protected_regular sysctl is enabled, the file already
exists and is a FIFO or regular file, the owner of the file
is neither the current user nor the owner of the containing
directory, and the containing directory is both world- or
group-writable and sticky. For details, see the
descriptions of /proc/sys/fs/protected_fifos and
/proc/sys/fs/protected_regular in proc_sys_fs(5).

EBADF (openat()) pathname is relative but dirfd is neither
AT_FDCWD nor a valid file descriptor.

EBUSY O_EXCL was specified in flags and pathname refers to a
block device that is in use by the system (e.g., it is
mounted) .

EDQUOT Where O_CREAT is specified, the file does not exist, and
the user's quota of disk blocks or inodes on the filesystem
has been exhausted.

EEXIST pathname already exists and O_CREAT and O_EXCL were used.

EFAULT pathname points outside your accessible address space.

EFBIG See EOVERFLOW.

EINTR While blocked waiting to complete an open of a slow device

(e.g., a FIFO; see fifo(7)), the call was interrupted by a
signal handler; see signal(7).

:
k%ﬂ But what is the error?

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

The filesystem does not support the O DIRECT flag. See
NOTES for more information.

Invalid value in flags.

O_TMPFILE was specified in flags, but neither O_WRONLY nor
O_RDWR was specified.

O_CREAT was specified in flags and the final component
("basename") of the new file's pathname is invalid (e.g.,
it contains characters not permitted by the underlying
filesystem).

The final component ("basename") of pathname is invalid
(e.g., it contains characters not permitted by the
underlying filesystem).

& Rich Exception Object

A rich exception object can contain a lot
more context and detail about an error.

Exception-based Handling

int fd;

try {
fd = open(“some file”, O RDONLY);

} catch (const invalid flags exception& ex) {
printf(“invalid flag in open: %x\n”, ex.invalid flags);
return 1;

}

read(fd, buffer, 128);
close(fd);

Exception Generation in the Standard Library %

int file::open(const string& pathname, open_flags flags) {
int fd = open(pathname, flags);

if (fd < 0) {
errno_to_exception();

}

return fd;

}

void errno_to_execption()
{
switch (errno) {
case EINVAL:
throw invalid value_exception();
default:
throw unknown_error_exception();

}
}

What if we raised the
exception in the
kernel, and it
propagated through to
userspace?

Exception-based Handling

int fd;

try {
fd = open(“some file”, O RDONLY);

} catch (const invalid flags exception& ex) {
printf(“invalid flag in open: %x\n”, ex.invalid flags);
return 1;

}

read(fd, buffer, 128);
close(fd);

C++ Exception
Mechanism/ABI

& Exceptions in C++

Application Code C++ ABI Unwinding Library
throw expression |€---------- » __cxa_allocate
» _ cxa_throw @
_L-)_Unwind_RaiseException
A
personality function fe--------------- @
" 2
@ st » _Unwind_RaiseExceptionPhase2 |«

clean-up block [errmsmeerasinimininsanininnnnans

»{ _Unwind_Resume

l@ ----»| __cxa_begin_catch
%

catch block

--» _ cxa_end_catch

Crossing the boundary

System Call Throwing

User-space Application J ’ OS Kernel ‘

Normal Execution
¢ : — Save Process Context ‘

int $0x81 ; v

Handle System Call :] @

_Unwind_RaiseException |&— _Unwind_RaiseException

*] ®
_Unwind_Resume _Unwind_ReturnTouUser
v v

catch block iret 1

System Call Stack

User Stack

Main

Func 1

Kernel Stack

Func 2

System Call

Saved Process Context

Syscall Handler Func

Helper Func

System Call Stack

User Stack

Main

Func 1

Kernel Stack

Func 2

System Call

Saved Process Context

Syscall Handler Func

Helper Func

throw

System Call Stack

User Stack

Main

Func 1

Kernel Stack

Func 2

System Call

Saved Process Context

Syscall Handler Func

System Call Stack

User Stack

Main

Func 1

Kernel Stack

Func 2

System Call

Saved Process Context

Syscall Handler Func

Copy
exception

object to user
space

O
o

& System Call Stack

User Stack

Main

Func 1

Update RIP to
‘Unwind_RaiseException”

VN

Kernel Stack Qu

Func 2

System Call

Saved Process Context

System Call Stack

User Stack

Main

Func 1

Func 2

_Unwind_RaiseException

v

_Unwind_Resume

v

catch block

& Copying the exception object

The exception object allocated in kernel space
would be inaccessible to user code, so it must be
copied.

This is the trickiest part, and is what places most limitations on the technique.

& Copying the exception object

When a user thread starts, it tells the kernel where
its exception storage buffer is, and notifies it
where the “_Unwind_RaiseException” function is.

During exception propagation, the kernel locates the buffer for the appropriate thread,
and copies the object in.

What about hardware
exceptions?

Exception Generation in the Standard Library %

long random() {
try {
long result ;
asm("rdrand %0" : "=r"(result));
return result;
} catch (const illegal instruction exc& e) {
return generate random_slow();

Exception Generation in the Standard Library %

.globl illegal instruction_handler
illegal instruction_handler:
<save context>
long r‘andom() { call handle_illegal_instruction
<restore context>
try { iret
long result ;

asm({rdrand %9} : "=r"(result));
return result;

} catch (const illegal instruction exc& e) {
return generate random_slow();

Page Fault Exception

Page faults can be kept in the context of the code causing
them, rather than a “global” signal handler.

int read_state(object *obj) {
try {
return obj->state;
} catch (const null pointer exception& e) {
throw invalid object ptr();

}
}

Analysis

Key Results

e Exception handling is slow.
o Throwing and catching an exception takes 18x longer, than doing nothing.

e But, in the non-exceptional case, it's faster; as there are fewer tests on the “hot
path”

e Binaries get bigger.

e Application ecosystem needs to support exceptions.

%ﬂ Thanks!

Any questions?

Tom Spink
University of St Andrews
tcs6é@st-andrews.ac.uk

Error Propagation

fn might _error(val: i32) -> Result<i32, i32>

{
if val < @ {
Ok(val * 2)
} else {
Err(0)
}
}

fn test(val: i32) -> Result<i32, i32> {
let result = might error(val)?;
Ok(result);

Error Propagation

pub enum Flags
{

None,

Direct

}

pub enum SomeKindOfError
{

BadFlags(Flags)
}

pub fn open(path: PathBuf, flags: Flags) -> Result<i32, SomeKindOfError>
{
if flags == Flags::Direct {
Err(SomeKindOfError: :BadFlags(Flags: :Direct))
} else {
Ok(1)
}

Research Operating System

e InfOS (no longer maintained):
https://qgithub.com/tspink/infos

e StACSOS (actively maintained!):
https://qithub.com/tspink/stacsos

https://github.com/tspink/infos
https://github.com/tspink/stacsos

User-space Kernel-space User-space Kernel-space

\ 4

Interrupt Handler

Normal Execution 4{ Interrupt Handler ‘ Normal Execution

I l I ‘,

‘ tem Call
S(%sttgg\x :3:18)“ E— [Save Context ‘ ?ﬁ; $0x81) Save Context
l v
7‘ i i i Do System Call
Normal Execution - [?:’af)i‘?:ssgl ‘ [_Unwind_RaiseException }1— L e

l \ 4 v
>

4[Restore Context ‘ [_Unwind_Resume J [_Unwnd_RalseExcepuon

h 4 A4

[Catch Block —{ _Unwind_ReturnToUser

l

‘ Normal Execution

