
Static Analysis of Reference-Counted Objects for
the C Programming Language

2025-10-13

Ole Wiedemann, Volkmar Sieh

Friedrich-Alexander-Universität Erlangen-Nürnberg
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project
number 539710462.

informatik 4
systemsoftware



Motivation

The C programming language is widely used in systems programming

. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations

. Usage can be error-prone

$ Static analysis to check reference counting

. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations

. Usage can be error-prone

$ Static analysis to check reference counting

. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety

Reference counting to track allocations

. Usage can be error-prone

$ Static analysis to check reference counting

. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations

. Usage can be error-prone
$ Static analysis to check reference counting

. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations
. Usage can be error-prone

$ Static analysis to check reference counting

. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations
. Usage can be error-prone

$ Static analysis to check reference counting

. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations
. Usage can be error-prone

$ Static analysis to check reference counting
. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations
. Usage can be error-prone

$ Static analysis to check reference counting
. Rely on conventions or heuristics
. Perform inter-procedural analysis

. Limited support for language features

1



Motivation

The C programming language is widely used in systems programming
. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations
. Usage can be error-prone

$ Static analysis to check reference counting
. Rely on conventions or heuristics
. Perform inter-procedural analysis
. Limited support for language features

1



The Problem



Reference Counting

1 ref_init(x); // Initializes the counter to 1
2 ref_acquire(x); // Increments the counter by 1
3 ref_release(x); // Decrements the counter by 1

Counter is handled by the programmer
Counter must equal the number of references
Incorrect counters can cause memory leaks or use-after-free
anomalies

2



Reference Counting

1 ref_init(x); // Initializes the counter to 1
2 ref_acquire(x); // Increments the counter by 1
3 ref_release(x); // Decrements the counter by 1

Counter is handled by the programmer

Counter must equal the number of references
Incorrect counters can cause memory leaks or use-after-free
anomalies

2



Reference Counting

1 ref_init(x); // Initializes the counter to 1
2 ref_acquire(x); // Increments the counter by 1
3 ref_release(x); // Decrements the counter by 1

Counter is handled by the programmer
Counter must equal the number of references

Incorrect counters can cause memory leaks or use-after-free
anomalies

2



Reference Counting

1 ref_init(x); // Initializes the counter to 1
2 ref_acquire(x); // Increments the counter by 1
3 ref_release(x); // Decrements the counter by 1

Counter is handled by the programmer
Counter must equal the number of references
Incorrect counters can cause memory leaks or use-after-free
anomalies

2



Example

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?
Q3 How should inode_alloc behave?
Q4 Is this code correct?

3



Example

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?

Q2 How does ref_alloc behave?
Q3 How should inode_alloc behave?
Q4 Is this code correct?

3



Example

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?

Q3 How should inode_alloc behave?
Q4 Is this code correct?

3



Example

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?
Q3 How should inode_alloc behave?

Q4 Is this code correct?

3



Example

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?
Q3 How should inode_alloc behave?
Q4 Is this code correct?

3



Our Approach



Overview

1. Annotations
2. Static analysis

2.1 Simplification
2.2 Annotation checking
2.3 State calculation
2.4 State checking

4



Annotations

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?

✓

Q2 How does ref_alloc behave?

✓

Q3 How should inode_alloc behave?

✓

5



Which structures are reference-counted?

1 struct inode {
2 ...
3 } REF_TYPE;

1 struct fs {
2 ...
3 } REF_TYPE;

6



Annotations

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted? ✓

Q2 How does ref_alloc behave?

✓

Q3 How should inode_alloc behave?

✓

7



How does ref_alloc behave?

1 extern void REF_TYPE *ref_alloc(size_t size)
2 REF_ACQUIRE_IF(__return__ != NULL, __return__);

8



Annotations

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted? ✓

Q2 How does ref_alloc behave? ✓

Q3 How should inode_alloc behave?

✓

9



How should inode_alloc behave?

1 struct inode *inode_alloc(struct fs *fs)
2 REF_ACQUIRE_IF(__return__ != NULL, __return__)
3 {
4 ...
5 }

10



Annotations

1 struct inode *inode_alloc(struct fs *fs)
2 REF_ACQUIRE_IF(__return__ != NULL, __return__) {
3 struct inode *i = ref_alloc(sizeof(*i));
4 if (i == NULL) return NULL;
5 i->i_fs = fs;
6 return i;
7 }

Q1 Which structures are reference-counted? ✓

Q2 How does ref_alloc behave? ✓

Q3 How should inode_alloc behave? ✓

Q4 Is this code correct? ?

11



Static Analysis

foreach module-ast:
m = simplify(module-ast)
check_annotations(m)
c = control_flow_graph(m)

$ s = calculate_state(c)
$ check_state(m, s)

12



Is this code correct?

struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL)

return NULL;

i->i_fs = fs;
return i;

i +1

✓

fs -1

.

i == NULL
i != NULL

Return value must have a reference delta of +1

REF_ACQUIRE_IF(__return__ != NULL, __return__)

Any other value must have a reference delta of 0

13



Is this code correct?

struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL)

return NULL;

i->i_fs = fs;
return i;

i +1 ✓
fs -1

.

i == NULL
i != NULL

Return value must have a reference delta of +1
REF_ACQUIRE_IF(__return__ != NULL, __return__)

Any other value must have a reference delta of 0

13



Is this code correct?

struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL)

return NULL;

i->i_fs = fs;
return i;

i +1 ✓
fs -1 .

i == NULL
i != NULL

Return value must have a reference delta of +1
REF_ACQUIRE_IF(__return__ != NULL, __return__)

Any other value must have a reference delta of 0
13



Discussion



Evaluation

Implemented in the FAUCCC static analyzer

Checks the Linux-compatible JITTY operating system
Catches bugs before they are committed

Makes effectiveness evaluation difficult

Number of annotations:

33 / 605 structures (∼ 5%)
220 / 4433 functions (∼ 5%)

Very fast (<1 second) for most modules

14



Evaluation

Implemented in the FAUCCC static analyzer
Checks the Linux-compatible JITTY operating system

Catches bugs before they are committed

Makes effectiveness evaluation difficult

Number of annotations:

33 / 605 structures (∼ 5%)
220 / 4433 functions (∼ 5%)

Very fast (<1 second) for most modules

14



Evaluation

Implemented in the FAUCCC static analyzer
Checks the Linux-compatible JITTY operating system
Catches bugs before they are committed

Makes effectiveness evaluation difficult
Number of annotations:

33 / 605 structures (∼ 5%)
220 / 4433 functions (∼ 5%)

Very fast (<1 second) for most modules

14



Evaluation

Implemented in the FAUCCC static analyzer
Checks the Linux-compatible JITTY operating system
Catches bugs before they are committed

Makes effectiveness evaluation difficult

Number of annotations:

33 / 605 structures (∼ 5%)
220 / 4433 functions (∼ 5%)

Very fast (<1 second) for most modules

14



Evaluation

Implemented in the FAUCCC static analyzer
Checks the Linux-compatible JITTY operating system
Catches bugs before they are committed

Makes effectiveness evaluation difficult
Number of annotations:

33 / 605 structures (∼ 5%)
220 / 4433 functions (∼ 5%)

Very fast (<1 second) for most modules

14



Evaluation

Implemented in the FAUCCC static analyzer
Checks the Linux-compatible JITTY operating system
Catches bugs before they are committed

Makes effectiveness evaluation difficult
Number of annotations:

33 / 605 structures (∼ 5%)
220 / 4433 functions (∼ 5%)

Very fast (<1 second) for most modules

14



Limitations

Aliased parameters can cause false negatives

Reference cycles are not handled
Conditional reference counting operations are rejected

if (a == 2) ref_acquire(x);
/* ... */
if (b == 2) ref_release(x);

$ These limitations are solvable

15



Limitations

Aliased parameters can cause false negatives
Reference cycles are not handled

Conditional reference counting operations are rejected

if (a == 2) ref_acquire(x);
/* ... */
if (b == 2) ref_release(x);

$ These limitations are solvable

15



Limitations

Aliased parameters can cause false negatives
Reference cycles are not handled
Conditional reference counting operations are rejected

if (a == 2) ref_acquire(x);
/* ... */
if (b == 2) ref_release(x);

$ These limitations are solvable

15



Limitations

Aliased parameters can cause false negatives
Reference cycles are not handled
Conditional reference counting operations are rejected

if (a == 2) ref_acquire(x);
/* ... */
if (b == 2) ref_release(x);

$ These limitations are solvable

15



Future Work

Apply the approach to other projects (Linux, FreeBSD, ...)

Add initialization analysis
Add finalization analysis

16



Future Work

Apply the approach to other projects (Linux, FreeBSD, ...)
Add initialization analysis

Add finalization analysis

16



Future Work

Apply the approach to other projects (Linux, FreeBSD, ...)
Add initialization analysis
Add finalization analysis

16



Conclusion

Static analyzer for reference-counting
Annotations instead of conventions or
heuristics
Performs fast intra-procedural analysis

Q & A

For further questions:
wiedemann@cs.fau.de

17

https://doi.org/10.1145/3764860.3768328

	The Problem
	Our Approach
	Discussion

