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Motivation

The C programming language is widely used in systems programming

. Memory safety remains an issue

External tooling and programming techniques to increase safety
Reference counting to track allocations

. Usage can be error-prone

$ Static analysis to check reference counting

. Rely on conventions or heuristics

. Perform inter-procedural analysis

. Limited support for language features
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The Problem



Reference Counting

1 ref_init(x); // Initializes the counter to 1
2 ref_acquire(x); // Increments the counter by 1
3 ref_release(x); // Decrements the counter by 1

Counter is handled by the programmer
Counter must equal the number of references
Incorrect counters can cause memory leaks or use-after-free
anomalies
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Example

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?
Q3 How should inode_alloc behave?
Q4 Is this code correct?
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Our Approach



Overview

1. Annotations
2. Static analysis

2.1 Simplification
2.2 Annotation checking
2.3 State calculation
2.4 State checking
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Annotations

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted?

✓

Q2 How does ref_alloc behave?

✓

Q3 How should inode_alloc behave?

✓
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Which structures are reference-counted?

1 struct inode {
2 ...
3 } REF_TYPE;

1 struct fs {
2 ...
3 } REF_TYPE;
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Annotations

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted? ✓

Q2 How does ref_alloc behave?

✓

Q3 How should inode_alloc behave?

✓
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How does ref_alloc behave?

1 extern void REF_TYPE *ref_alloc(size_t size)
2 REF_ACQUIRE_IF(__return__ != NULL, __return__);
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Annotations

1 struct inode *inode_alloc(struct fs *fs) {
2 struct inode *i = ref_alloc(sizeof(*i));
3 if (i == NULL) return NULL;
4 i->i_fs = fs;
5 return i;
6 }

Q1 Which structures are reference-counted? ✓

Q2 How does ref_alloc behave? ✓
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How should inode_alloc behave?

1 struct inode *inode_alloc(struct fs *fs)
2 REF_ACQUIRE_IF(__return__ != NULL, __return__)
3 {
4 ...
5 }

10



Annotations

1 struct inode *inode_alloc(struct fs *fs)
2 REF_ACQUIRE_IF(__return__ != NULL, __return__) {
3 struct inode *i = ref_alloc(sizeof(*i));
4 if (i == NULL) return NULL;
5 i->i_fs = fs;
6 return i;
7 }

Q1 Which structures are reference-counted? ✓

Q2 How does ref_alloc behave? ✓

Q3 How should inode_alloc behave? ✓

Q4 Is this code correct? ?
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Static Analysis

foreach module-ast:
m = simplify(module-ast)
check_annotations(m)
c = control_flow_graph(m)

$ s = calculate_state(c)
$ check_state(m, s)
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Is this code correct?

struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL)

return NULL;

i->i_fs = fs;
return i;

i +1

✓

fs -1

.

i == NULL
i != NULL

Return value must have a reference delta of +1

REF_ACQUIRE_IF(__return__ != NULL, __return__)

Any other value must have a reference delta of 0
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Discussion



Evaluation

Implemented in the FAUCCC static analyzer

Checks the Linux-compatible JITTY operating system
Catches bugs before they are committed

Makes effectiveness evaluation difficult

Number of annotations:

33 / 605 structures (∼ 5%)
220 / 4433 functions (∼ 5%)

Very fast (<1 second) for most modules
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Limitations

Aliased parameters can cause false negatives

Reference cycles are not handled
Conditional reference counting operations are rejected

if (a == 2) ref_acquire(x);
/* ... */
if (b == 2) ref_release(x);

$ These limitations are solvable
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Future Work

Apply the approach to other projects (Linux, FreeBSD, ...)

Add initialization analysis
Add finalization analysis
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Conclusion

Static analyzer for reference-counting
Annotations instead of conventions or
heuristics
Performs fast intra-procedural analysis

Q & A

For further questions:
wiedemann@cs.fau.de
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