Static Analysis of Reference-Counted Objects for
the C Programming Language

2025-10-13

Ole Wiedemann, Volkmar Sieh

Friedrich-Alexander-Universitat Erlangen-Niirnberg
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project
number 539710462.

0 &\"! I!' Friedrich-Alexander-Universitat DFG
informatik 4
systemsoftware Il /=\\

Motivation

m The C programming language is widely used in systems programming

Motivation

m The C programming language is widely used in systems programming
A Memory safety remains an issue

Motivation

m The C programming language is widely used in systems programming
A Memory safety remains an issue

m External tooling and programming techniques to increase safety

Motivation

m The C programming language is widely used in systems programming
A Memory safety remains an issue

m External tooling and programming techniques to increase safety

m Reference counting to track allocations

Motivation

m The C programming language is widely used in systems programming
A Memory safety remains an issue

m External tooling and programming techniques to increase safety

m Reference counting to track allocations
A Usage can be error-prone

Motivation

m The C programming language is widely used in systems programming
A Memory safety remains an issue
m External tooling and programming techniques to increase safety
m Reference counting to track allocations
A Usage can be error-prone
-» Static analysis to check reference counting

Motivation

m The C programming language is widely used in systems programming
A Memory safety remains an issue
m External tooling and programming techniques to increase safety
m Reference counting to track allocations
A Usage can be error-prone
-» Static analysis to check reference counting
Rely on conventions or heuristics

. . '__jﬂ
Motivation)

m The C programming language is widely used in systems programming
A Memory safety remains an issue
m External tooling and programming techniques to increase safety
m Reference counting to track allocations
A Usage can be error-prone
-» Static analysis to check reference counting

Rely on conventions or heuristics
Perform inter-procedural analysis

. . '__jﬂ
Motivation)

m The C programming language is widely used in systems programming
A Memory safety remains an issue
m External tooling and programming techniques to increase safety
m Reference counting to track allocations
A Usage can be error-prone
-» Static analysis to check reference counting

Rely on conventions or heuristics
Perform inter-procedural analysis
Limited support for language features

The Problem

Reference Counting

1

2

3

ref_init(x); // Initializes the counter to 1
ref_acquire(x); // Increments the counter by 1
ref_release(x); // Decrements the counter by 1

Reference Counting

v ref_init(x); // Initializes the counter to 1
. ref_acquire(x); // Increments the counter by 1
s ref_release(x); // Decrements the counter by 1

m Counter is handled by the programmer

Reference Counting

v ref_init(x); // Initializes the counter to 1
. ref_acquire(x); // Increments the counter by 1
s ref_release(x); // Decrements the counter by 1

m Counter is handled by the programmer
m Counter must equal the number of references

Reference Counting

v ref_init(x); // Initializes the counter to 1
. ref_acquire(x); // Increments the counter by 1
s ref_release(x); // Decrements the counter by 1

m Counter is handled by the programmer
m Counter must equal the number of references

m |ncorrect counters can cause memory leaks or use-after-free
anomalies

Example

1

struct inode

*inode_alloc(struct fs *fs) {

struct inode *i = ref_alloc(sizeof(*1i));

if (1 ==
i->1 _fs =
return 1i;

NULL) return NULL;
fs;

Example

1

struct inode xinode_alloc(struct fs =fs) {
struct inode *i = ref_alloc(sizeof(*1i));
if (i == NULL) return NULL;
i->1_fs = fs;
return 1i;

}

Q1 Which structures are reference-counted?

Example

1

struct inode xinode_alloc(struct fs =fs) {
struct inode *i = ref_alloc(sizeof(*1i));
if (i == NULL) return NULL;
i->1_fs = fs;
return 1i;

}

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?

Example

1

struct inode xinode_alloc(struct fs =fs) {
struct inode *i = ref_alloc(sizeof(*1i));
if (i == NULL) return NULL;
i->1_fs = fs;
return 1i;

}

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?
Q3 How should inode_alloc behave?

Example

1

struct inode xinode_alloc(struct fs =fs) {
struct inode *i = ref_alloc(sizeof(*1i));
if (i == NULL) return NULL;
i->1_fs = fs;
return 1i;

}

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?

Q3 How should inode_alloc behave?

Q4 s this code correct?

Our Approach

Overview

1. Annotations
2. Static analysis
22 Simplification
2.2 Annotation checking

2.3 State calculation
2.4 State checking

Annotations

1

struct inode *inode_alloc(struct fs =*fs) {
struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL) return NULL;
i->1_fs = fs;
return 1;

}

Q1 Which structures are reference-counted?
Q2 How does ref_alloc behave?
Q3 How should 1node_alloc behave?

Which structures are reference-counted?

. struct inode {

s } REF_TYPE;

. struct fs {

s} REF_TYPE;

Annotations

1

struct inode *inode_alloc(struct fs =*fs) {
struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL) return NULL;
i->1_fs = fs;
return 1;

}

Q1 Which structures are reference-counted? v
Q2 How does ref_alloc behave?
Q3 How should 1node_alloc behave?

How does ref _alloc behave?

. extern void REF_TYPE xref_alloc(size t size)
2 REF_ACQUIRE_IF(__return__ '= NULL, __return__);

Annotations

1

struct inode *inode_alloc(struct fs =*fs) {
struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL) return NULL;
i->1_fs = fs;
return 1;

}

Q1 Which structures are reference-counted? v
Q2 How does ref_alloc behave? v/

Q3 How should 1node_alloc behave?

How should inode_alloc behave?

1 struct inode *inode_alloc(struct fs =fs)
2 REF_ACQUIRE _IF(__return__ '= NULL, __return__)
s o

-}

10

Annotations

1 struct inode *inode_alloc(struct fs =fs)

2 REF_ACQUIRE IF(__return__ '= NULL, _ _return__) {
3 struct inode *i = ref_alloc(sizeof(*1i));

4 if (i1 == NULL) return NULL;

5 i->1_fs = fs;

6 return 1i;

+ }

Q1 Which structures are reference-counted? v
Q2 How does ref_alloc behave? v/

Q3 How should inode_alloc behave? v/

Q4 Is this code correct?

1"

Static Analysis

foreach module-ast:
m = simplify(module-ast)
check_annotations(m)
c = control_flow_graph(m)
= s = calculate_state(c)
= check_state(m, s)

12

Is this code correct?

struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL)

i !'= NULL
i == NULL X
(i->i_fs = fs;
return ij;
return NULL;
i 0+
fs -

13

Is this code correct?

struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL)

i !'= NULL

= NULL &

(i->i_fs = fs;
return ij;

return NULL;
i w1V

fs -

i =

m Return value must have a reference delta of +1

« REF_ACQUIRE_IF(__return__ != NULL, __return__)

13

Is this code correct?

struct inode *i = ref_alloc(sizeof(*i));
if (i == NULL)

i !'= NULL

= NULL &

(i->i_fs = fs;
return ij;

return NULL;
i w1V

fs 14

i =

m Return value must have a reference delta of +1
« REF_ACQUIRE_IF(__return__ != NULL, _
m Any other value must have a reference delta of 0

_return__)

13

Discussion

Evaluation

m Implemented in the FAUCCC static analyzer

14

Evaluation

m Implemented in the FAUCCC static analyzer
m Checks the Linux-compatible JITTY operating system

14

Evaluation

m Implemented in the FAUCCC static analyzer
m Checks the Linux-compatible JITTY operating system
m Catches bugs before they are committed

14

Evaluation

m Implemented in the FAUCCC static analyzer
m Checks the Linux-compatible JITTY operating system

m Catches bugs before they are committed
= Makes effectiveness evaluation difficult

14

Evaluation

Implemented in the FAUCCC static analyzer

Checks the Linux-compatible JITTY operating system
Catches bugs before they are committed
= Makes effectiveness evaluation difficult

Number of annotations:

= 33 / 605 structures (~ 5%)
= 220 / 4433 functions (~ 5%)

14

Evaluation

Implemented in the FAUCCC static analyzer

Checks the Linux-compatible JITTY operating system

Catches bugs before they are committed
= Makes effectiveness evaluation difficult
Number of annotations:

= 33 / 605 structures (~ 5%)
= 220 / 4433 functions (~ 5%)

Very fast (<1 second) for most modules

14

Limitations

m Aliased parameters can cause false negatives

15

Limitations

m Aliased parameters can cause false negatives
m Reference cycles are not handled

15

Limitations

m Aliased parameters can cause false negatives
m Reference cycles are not handled

m Conditional reference counting operations are rejected
if (a == 2) ref_acquire(x);

VA V4

if (b == 2) ref_release(x);

15

Limitations

m Aliased parameters can cause false negatives
m Reference cycles are not handled
m Conditional reference counting operations are rejected

if (a == 2) ref_acquire(x);
J* s */
if (b == 2) ref_release(x);

=» These limitations are solvable

15

Future Work

m Apply the approach to other projects (Linux, FreeBSD, ...)

16

Future Work

m Apply the approach to other projects (Linux, FreeBSD, ...)
m Add initialization analysis

16

Future Work

m Apply the approach to other projects (Linux, FreeBSD, ...)
m Add initialization analysis
m Add finalization analysis

16

Conclusion

m Static analyzer for reference-counting

m Annotations instead of conventions or
heuristics

m Performs fast intra-procedural analysis

For further questions:
wiedemann@cs.fau.de

17

https://doi.org/10.1145/3764860.3768328

	The Problem
	Our Approach
	Discussion

