Towards Hybrid Cooperative-Preemptive Scheduling

Yizheng Xie Di Jin Nikos Vasilakis
yizheng xie@brown.edu di_jin@brown.edu nikos@vasilak.is

5| Brown University

Multitasking

- N vmware 3 dWS
[Email }{ Video }{ Music } .\'\

Cevsener 111 (eor] nede(l ¢ @

\{Gaming J{ Other tasks... L

< Y a8 0

MacOS

How to schedule tasks?

Preemptive scheduling v.s. Cooperative scheduling

Preemptive Scheduling

Stale

Task A: read("x"); ‘0; Task B: read("x"); <°, update("x",x+1) ‘o, update("x",x+1)

‘0.'; Scheduler

Linux Completely Fair Scheduler (CFS) KILLED BY A MACHINE: THE
THERAC-25

by: Adam Fabio

7

Submitted By: Risat Mahmud Pathan

Cooperative Scheduling

Task A: read("x"); update("x",x+1) Task B: read(x); yield/await;

e e e e e mmmmmmm e mmmmmmm e m—————— - —— === === []MeE

Task X: while {;}

Outage Postmortem - July 20, 2016

& How to prevent Coroutines from freezing Unity? Overview stackoverflow

Unity Engine ' Scripting 7
2 On July 20, 2016 we experienced a 34 minute outage star The events of July 2 CLOUDFLARE

identify the cause, 14 minutes to write the code to fix it, ar 0On July 2, we deployed a new rule in our WAF Managed Rules

that caused CPUs to become exhausted on every CPU core
that handles HTTP/HTTPS traffic on the Cloudflare network

The direct cause was a malformed post that caused one ¢) .)
worldwide. We are constantly improving WAF Managed Rules to

where Stack Overflow became available again.

S3M1CZ

. .) . . . CPU on our web servers. The post was in the homepage | o
Whenever | use Coroutines there is always a risk of it completely freezing my game upon pressin . . . respond to new vulnerabilities and threats. In May, for example,
expression to be called on each home page view. This cat

we used the speed with which we can update the WAF to push

X a rule to protect against a serious SharePoint vulnerability.
became unavailable since the load balancer took the serve ——— . " -
- = Being able to deploy rules quickly and globally is a critical

runtime: non-cooperative goroutine preemption #24543 feature of our WAF.

. © Closed Unfortunately, last Tuesday's update contained a regular
expression that backtracked enormously and exhausted CPU
used for HTTP/HTTPS serving. This brought down Cloudflare's

enough. Since the home page is what our load balancer u

e aclements opened on Mar 26, 2018 - edited by aclements Edits v Member +++ core proxying, CDN and WAF functionality. The following graph
shows CPUs dedicated to serving HTTP/HTTPS traffic spiking
| propose that we solve #10958 (preemption of tight loops) using non-cooperative preemption techniques. | have a detailed to nearly 100% usage across the servers in our network.
design proposal, which | will post shortly. This issue will track this specific impl; ation approach, as d to the general

problem.
Edit: Design doc

Currently, Go currently uses compiler-inserted cooperative preemption points in function prologues. The majority of the time,
this is good enough to allow Go developers to ignore preemption and focus on writing clear parallel code, but it has sharp
edges that we've seen degrade the developer experience time and time again. When it goes wrong, it goes spectacularly
wrong, leading to mysterious system-wide latency issues (#17831, #19241) and sometimes complete freezes (#543, #12553,
#13546, #14561, #15442, #17174, #20793, #21053). And because this is a language implementation issue that exists outside of

Go's language semantics, these failures are surprising and very difficult to debug.

CPU utilization in one of our PoPs during the incident

Example: Regular Expression Denial-of-Service

Malicious request: {input: "aaaaaaaaaaaaaaaaaaa"}

Table 1: Results of our search for SL regexes in the npm and
pypi module registries. Troublingly, 1% of unique regexes
were SL regexes, affecting over 10,000 modules.

function regex_handler(req, res) {

_mn n .
ConSt matCh - : matCh(r\eq ° bOdy)) Registry Total Scanned Unique SL Affected
Modules Modules Regexes Regexes Modules
} npm 565,219 375,652 349,852 3,589 13,018
(66%) (1%) (3%)
app. get (" " , r\egex_handlep) ; pypi 126,304 72,750 63,352 704 705

(58%) (1%) (1%)

"safe-regex" or "worker_threads" ->Not generalizable to other problems

Stopify (PLDI’18), Compiler Interrupts (PLDI’21), Concord (SOSP’23) -> Not always practical
-> Not flexible

A hybrid scheduler that allows only carefully controlled and developer-configurable
preemption in an otherwise cooperative environment.

A Hybrid Scheduling Runtime

Task A: read("x"); update("x",x+1) Task B: read(x); yield/await;

Cooperative Abstraction

A Hybrid Scheduling Runtime
Task A: read("x") Preemption update("x",x+1) Task B: read(x); yield/await;

Safety Preemption * x=x’

Flexibility Preemption <°.;' Whether and when?
Timeout Health Check What task?

Cooperative Abstraction + Controlled and Configurable Preemption

Example: Regular Expression Denial-of-Service

Malicious request: {input: "aaaaaaaaaaaaaaaaaaa"}

import hybrid

hybrid.registerPreemption ({
function regex_handler(req, res) {

n 1] : 56’
const match = " ".match(req.body);
" ": monitor });
}
app.get(" ", regex_handler); Developer-configurable Policy and Action
function monitor() {
if hybrid.getTaskExecTime(regex_handler) > {

hybrid.abort();
} else { hybrid.continue(); }

10

System Design

11

System Design: Abstraction—Introducing Configurable Preemption

func T;
hybrid.registerPreemption ({

"action”: @ });

: @,

=

Cooperative Runtime

JavaScript

Main Execution ; ;
Context T

12

System Design: Underlying Mechanism and Implementation
func T;

hybrid.registerPreemption ({

- 9,
"action”: @ 1);

| IPC type |Relative Latency|
| | (normalized) |

R Fm e +
| User {PI | 1.0 | Preemption
S 14.8)

w | Signa | ' 9] Execution Contexta

Fmm Fm + ;

Hybrid Runtime ,’ ﬁ State/Control Stub
I
Event/ \ Notification Interrupt Handler ’_ Main Execution

Timer @) ———> (Orchestration) Context T

© libuv

13

System Design: Safe Extensibility

<a> ::= "continue()" "abort()" <more>
func T; O" | 0" |

<more> ::= ...
hybrid.registerPreemption ({

: @, (1) Termination (2) No Third-party Libs (3) No State Mutation
mn n : a });
<> I | Preemption
n n :q .
_)[Static Checker p Execution Context a
1
Hybrid Runtime ,' ﬁ State/Control Stub
I
Event/ \ Notification Interrupt Handler ’_ Main Execution
Timer @/ ———> (Orchestration) Context T

14

Broader Uses

e Performance: prevents head-of-line blocking, delayed garbage collections
Long-running Task Critical Garbage Collection
® Security: prevents asymmetric denial-of-service and resource exhaustion... i
€ RGBLOX 3! unity

([J

Observability: supports instrumentations, profiling...

collector.(*netStatColl... ~ collector.(*systemdCollector).Update colle....
[collector.(*hwMonCol... " collector.ge...| regexp.(*Regexp).doE... collector.filterUnits " rege...
[collector.collectS.... || [collector...] regexp.(b regexp.(rege...
["collector.explode..] regex... regexp.(*Regexp).... regexp.(*Rege... regexp.(*Regexp)..
regexp.(*Regex... reg... regexp.(*R...
regexp.(*Rege... || reg...
regexp.(*Reg... | reg...

regexp.(...

15

A hybrid scheduler that allows only carefully controlled and developer-configurable
preemption in an otherwise cooperative environment.

Yizheng Xie Di Jin Nikos Vasilakis
yizheng _xie@brown.edu di_jin@brown.edu nikos@vasilak.is

16

